Research Article
BibTex RIS Cite

Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları

Year 2025, Volume: 25 Issue: 4, 916 - 927, 04.08.2025
https://doi.org/10.35414/akufemubid.1548540

Abstract

Bu çalışmada, özel bir bağlantı elemanının kesit geometrisinde silindirik formdan kareye değişikliği ve soğuk dövmede operasyon adım sayısının azaltılması ile üretim verimliliğinin artırılması hedeflenmiş ve üretim sırasında hammadde ve kalıpta ortaya çıkan gerilmeler incelenmiştir. Çalışmada, tasarım ve proses parametreleri simülasyon analizleri belirlenmiş, prototip üretimler gerçekleştirilmiş ve deneysel doğrulama çalışmaları yapılmıştır. Bağlantı elemanı, geleneksel proses tasarım çalışmalarıyla öngörülen 5 veya 6 operasyonla, 20MnB4 düşük karbonlu çelik hammadde kullanılarak üretilmiştir. Simülasyona dayalı tasarım çalışmalarında; kesit daralmaları, kare kesitin silindirik hammaddeden eldesi ve kafa formunun oluşturulması sırasında meydana gelen gerilme değerleri araştırılmıştır. Prototipleme sürecinde, simülasyon çalışmalarının sonuçlarına göre, iki ekstrüzyon operasyonunun tek kalıpta gerçekleştirilmesi ve optimum kalıp gerilmelerinin tespit edildiği 5 operasyonlu proses tasarımına dayanan soğuk dövme yöntemiyle üretim yapılmıştır. Araştırmanın sonucunda, sanal ve deneysel çalışmalardan elde edilen sonuçlar karşılaştırmalı olarak incelenmiştir. Sanal ve gerçek veriler arasında ortalama %98,9 düzeyinde bir uyum tespit edilmiştir. Ayrıca, kalıp maliyetinde yaklaşık %15 oranında azalma ve kafa altı kare form bölgesinin şekillendirilmesinde kullanılan kalıp ömründe %18 oranında artış elde edilmiştir.

References

  • Behrens, B. A., Puppa, J., Huskic, A., Brunotte, K., Bouguecha, A. ve Prüß, T., 2016. Influence of heat pipe cooling on the wear of hot forging dies. Production Engineering, 10, 1-8. https://doi.org/10.1007/s11740-016-0698-z
  • Black, J. T. ve Kohser, R. A., 2012. DeGarmo’s materials and processes in manufacturing, John Wiley & Sons, Inc.
  • Bulzak, T., Winiarski, G., Wójcik, Ł., Szala, M. 2022. Application of numerical simulation and physical modeling for verifying a cold forging process for rotary sleeves. Journal of Materials Engineering and Performance, 31, 2267–2280. https://doi.org/10.1007/s11665-021-06314-x
  • Bunge, H. J., Pöhlandt, K., Tekkaya, A. E. ve Banabic, D., 2000. Formability of Metallic Materials, Springer Berlin, Heidelberg.
  • Chai, U., Tzou, G. Y., Hsu, C. ve Wei, S., 2020. FEM simulation of multi-stage forging for dray fasteners. Key Engineering Materials, 830, 1-8. https://doi.org/10.4028/www.scientific.net/KEM.830.1
  • Chang, T. P., Huang, S. C., Huang, T. F. ve Dao, T. P., 2013. Analysis of cold preforming process for hollow fasteners with thin flange. Applied Mechanics and Materials, 418, 246-249. https://doi.org/10.4028/www.scientific.net/AMM.418.246
  • Chen, S., Qin, Y., Chen, J. G. ve Choy, C. M., 2018. A forging method for reducing process steps in the forming of automotive fasteners. International Journal of Mechanical Sciences, 137, 1-14. https://doi.org/10.1016/j.ijmecsci.2017.12.045
  • Dalbosco, M., Lopes, G. S., Schmitt, P. D., Pinotti, L. ve Boing, D., 2021. Improving fatigue life of cold forging dies by finite element analysis: A case study. Journal of Manufacturing Processes, 64, 349–355. https://doi.org/10.1016/j.jmapro.2021.01.039
  • Díaz, A., Cuesta, I. I., Alegre, J. M., Jesus, A. M. P. ve Manso, J. M., 2021. Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling. Thin-Walled Structures, 159, 107335. https://doi.org/10.1016/j.tws.2020.107335
  • Groover, M., 2010. Fundamentals of modern manufacturing: materials, processes and systems, John Wiley & Sons, Inc.
  • Gusel, L. ve Rudolf, R., 2015. Shear stress distribution analysis in cold formed material. Procedia Engineering, 100, 41-45. https://doi.org/10.1016/j.proeng.2015.01.340
  • Güler, M. ve Şen, S., 2016. Sonlu elemanlar yöntemi hakkında genel bilgiler. Ordu Üniversitesi Bilim Teknoloji Dergisi, 5(1), 56-66.
  • Huang, H. S. ve Hsia, S. Y., 2016. New design of process for cold forging to improve multi-stage gas fitting. Advances in Mechanical Engineering, 8(4), 1-12. https://doi.org/10.1177/1687814016641571
  • Hussain, K., Samad, Z., Othman, A., Pilli, S. C., Salman, N. J., Badruddin, I., Hakim, S. S., Quadir, G. ve Abdullah, A. B. 2009. A study on cold forging die design using different techniques. Modern Applied Science, 3. https://doi.org/10.5539/mas.v3n3p143
  • İnce, U. ve Güden, M., 2008. Simulation of The Cold Forging Process In Fastener Manufacture, Proceedings III. International Scientific Technical Conferance, Minsk, Belarus, 15-17.
  • Jesner, G., Marsoner, S., Schemmel, I., Haeussler, K., Ebner, R. ve Pippan, R., 2008. Damage mechanisms in materials for cold forging dies under loading conditions typical for dies. International Journal of Microstructure and Materials Properties, 3, 297-310. https://doi.org/10.1504/IJMMP.2008.018736
  • Jo, A., Jeong, M., Lee, S., Moon, Y. ve Hwang, S., 2021. Multi-stage cold forging process for manufacturing a high-strength one-body input shaft. Materials, 14(3), 532. https://doi.org/10.3390/ma14030532
  • Joun, M. S., Ji, S. M., Chung, W. J., Cho, G. S. ve Lee, K. H., 2022. A new general fatigue limit diagram and its application of predicting die fatigue life during cold forging. Materials, 15(7), 2351. https://doi.org/10.3390/ma15072351
  • Kadoya, S., Kitayama, S., Takano, M. ve Kobayashi, A., 2021. Process parameters optimization for minimizing risk of crack and forging energy in cold forging. Transactions of the Japan Society of Mechanical Engineers, 87. http://doi.org//10.1299/transjsme.20-00370
  • Kaur, J., Pabla, B.S., Dhami, S.S., 2019. Optimization and comparison of deformation during closed die forging of different parts. In: Malik, H., Srivastava, S., Sood, Y., Ahmad, A. (eds) Applications of Artificial Intelligence Techniques in Engineering. Advances in Intelligent Systems and Computing, 698. Springer, Singapore. https://doi.org/10.1007/978-981-13-1819-1_44
  • Kılıçaslan, C. ve İnce, U., 2017. Civata soğuk dövme işleminde kalıp ömrünün arttırılması: Dövme kademe tasarımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(5), 961-967. https://doi.org/10.16984/saufenbilder.286029
  • Knoerr, M., Lange, K. ve Altan, T., 1994. Fatigue failure of cold forging tooling: Causes and possible solutions through fatigue analysis. Journal of Materials Processing Technology, 46(1-2), 57-71. https://doi.org/10.1016/0924-0136(94)90102-3
  • Ku, T. W., Kim, L. H. ve Kang, B. S., 2013. Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Materials & Design, 49, 368-385. https://doi.org/10.1016/j.matdes.2013.01.030
  • Lee, Y., Lee, J. ve Ishikawa, T., 2002. Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy. Journal of Materials Processing Technology, 130-131, 532-539. https://doi.org/10.1016/S0924-0136(02)00800-2
  • Pedersen, T. Ø., 2000. Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools. International Journal of Mechanical Sciences, 42(4), 799-818. https://doi.org/10.1016/S0020-7403(99)00019-3
  • Petrescu, D., Savage, S. C. ve Hodgson, P. D., 2002. Simulation of the fastener manufacturing process. Journal of Materials Processing Technology, 125-126, 361-368. https://doi.org/10.1016/S0924-0136(02)00301-1
  • Saroosh, M. A., Lee, H. C., Im, Y. T., Choi, S. W. ve Lee, D. L., 2007. High cycle fatigue life prediction of cold forging tools based on workpiece material property. Journal of Materials Processing Technology, 191(1-3), 178-181. https://doi.org/10.1016/j.jmatprotec.2007.03.015
  • Varfolomeev, I., Moroz, S., Siegele, D., Kadau, K. ve Amann, C., 2017. Study on fatigue crack initiation and propagation from forging defects. Procedia Structural Integrity, 7, 359-367. https://doi.org/10.1016/j.prostr.2017.11.100
  • Thara, S., Prommul, K. ve Watcharasrisamroeng, B. 2019. The optimization of tool life by fillet radiuson cold forging die using finite element and low cycle fatigue theory. International Journal of Mechanical and Production Engineering Research and Development, 9(2). https://doi.org/10.24247/ijmperdapr201957
  • Toparlı, M. B., 2019. Soğuk dövme kalıplarında ömür artışı elde etmek için baskı hasar mekanizmasının belirlenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 157-171. https://doi.org/10.17482/uumfd.507586
  • Winiarski, G., Bulzak, T. Wójcik, Ł. ve Szala, M. 2020. Numerical analysis of a six stage forging process for producing hollow flanged parts from tubular blanks. Advances in Science and Technology, 14, 201-208. https://doi.org/10.12913/22998624/116748
  • Zhang, Z., Yang, F., Shao, X., Gu, J., Zha, G., Tu, H. Y. ve Xie, B., 2021. Finite element analysis and life prediction of pre-stressed composed dies in cold extrusion process. Journal of Multiscale Modelling, 13, 2142001. https://doi.org/10.1142/S1756973721420014

Design Enhancement and Simulation Studies in Cold Forging Process to Increase Efficiency in Fastener Production

Year 2025, Volume: 25 Issue: 4, 916 - 927, 04.08.2025
https://doi.org/10.35414/akufemubid.1548540

Abstract

In this study, a modification was made to the cross-sectional geometry of a specific fastener, changing it from a cylindrical form to a square and by reducing the number of operational steps in cold forging and the stresses induced in the raw material and the die during production were examined. In the study, design and process parameters were determined through simulation analysis, prototypes were produced, and experimental validation studies were conducted. The fastener was produced using 20MnB4 low-carbon steel raw material through 5 or 6 operations as predicted by conventional process design methods. In the simulation-based design studies, the stress values occurring during cross-sectional reductions, the formation of the square cross-section from cylindrical raw material, and the head shaping process were investigated. During the prototyping process, based on the results of the simulation studies, production was carried out using the cold forging method with a 5-operation process design, in which two extrusion operations were performed in a single die, and optimal die stresses were identified. As a result of the study, it was determined that there is an average compatibility of 98.9% between the obtained virtual and real production data. Furthermore, approximately a 15% decrease in die cost and an 18% increase in die life used for shaping the head square form region were achieved.

References

  • Behrens, B. A., Puppa, J., Huskic, A., Brunotte, K., Bouguecha, A. ve Prüß, T., 2016. Influence of heat pipe cooling on the wear of hot forging dies. Production Engineering, 10, 1-8. https://doi.org/10.1007/s11740-016-0698-z
  • Black, J. T. ve Kohser, R. A., 2012. DeGarmo’s materials and processes in manufacturing, John Wiley & Sons, Inc.
  • Bulzak, T., Winiarski, G., Wójcik, Ł., Szala, M. 2022. Application of numerical simulation and physical modeling for verifying a cold forging process for rotary sleeves. Journal of Materials Engineering and Performance, 31, 2267–2280. https://doi.org/10.1007/s11665-021-06314-x
  • Bunge, H. J., Pöhlandt, K., Tekkaya, A. E. ve Banabic, D., 2000. Formability of Metallic Materials, Springer Berlin, Heidelberg.
  • Chai, U., Tzou, G. Y., Hsu, C. ve Wei, S., 2020. FEM simulation of multi-stage forging for dray fasteners. Key Engineering Materials, 830, 1-8. https://doi.org/10.4028/www.scientific.net/KEM.830.1
  • Chang, T. P., Huang, S. C., Huang, T. F. ve Dao, T. P., 2013. Analysis of cold preforming process for hollow fasteners with thin flange. Applied Mechanics and Materials, 418, 246-249. https://doi.org/10.4028/www.scientific.net/AMM.418.246
  • Chen, S., Qin, Y., Chen, J. G. ve Choy, C. M., 2018. A forging method for reducing process steps in the forming of automotive fasteners. International Journal of Mechanical Sciences, 137, 1-14. https://doi.org/10.1016/j.ijmecsci.2017.12.045
  • Dalbosco, M., Lopes, G. S., Schmitt, P. D., Pinotti, L. ve Boing, D., 2021. Improving fatigue life of cold forging dies by finite element analysis: A case study. Journal of Manufacturing Processes, 64, 349–355. https://doi.org/10.1016/j.jmapro.2021.01.039
  • Díaz, A., Cuesta, I. I., Alegre, J. M., Jesus, A. M. P. ve Manso, J. M., 2021. Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling. Thin-Walled Structures, 159, 107335. https://doi.org/10.1016/j.tws.2020.107335
  • Groover, M., 2010. Fundamentals of modern manufacturing: materials, processes and systems, John Wiley & Sons, Inc.
  • Gusel, L. ve Rudolf, R., 2015. Shear stress distribution analysis in cold formed material. Procedia Engineering, 100, 41-45. https://doi.org/10.1016/j.proeng.2015.01.340
  • Güler, M. ve Şen, S., 2016. Sonlu elemanlar yöntemi hakkında genel bilgiler. Ordu Üniversitesi Bilim Teknoloji Dergisi, 5(1), 56-66.
  • Huang, H. S. ve Hsia, S. Y., 2016. New design of process for cold forging to improve multi-stage gas fitting. Advances in Mechanical Engineering, 8(4), 1-12. https://doi.org/10.1177/1687814016641571
  • Hussain, K., Samad, Z., Othman, A., Pilli, S. C., Salman, N. J., Badruddin, I., Hakim, S. S., Quadir, G. ve Abdullah, A. B. 2009. A study on cold forging die design using different techniques. Modern Applied Science, 3. https://doi.org/10.5539/mas.v3n3p143
  • İnce, U. ve Güden, M., 2008. Simulation of The Cold Forging Process In Fastener Manufacture, Proceedings III. International Scientific Technical Conferance, Minsk, Belarus, 15-17.
  • Jesner, G., Marsoner, S., Schemmel, I., Haeussler, K., Ebner, R. ve Pippan, R., 2008. Damage mechanisms in materials for cold forging dies under loading conditions typical for dies. International Journal of Microstructure and Materials Properties, 3, 297-310. https://doi.org/10.1504/IJMMP.2008.018736
  • Jo, A., Jeong, M., Lee, S., Moon, Y. ve Hwang, S., 2021. Multi-stage cold forging process for manufacturing a high-strength one-body input shaft. Materials, 14(3), 532. https://doi.org/10.3390/ma14030532
  • Joun, M. S., Ji, S. M., Chung, W. J., Cho, G. S. ve Lee, K. H., 2022. A new general fatigue limit diagram and its application of predicting die fatigue life during cold forging. Materials, 15(7), 2351. https://doi.org/10.3390/ma15072351
  • Kadoya, S., Kitayama, S., Takano, M. ve Kobayashi, A., 2021. Process parameters optimization for minimizing risk of crack and forging energy in cold forging. Transactions of the Japan Society of Mechanical Engineers, 87. http://doi.org//10.1299/transjsme.20-00370
  • Kaur, J., Pabla, B.S., Dhami, S.S., 2019. Optimization and comparison of deformation during closed die forging of different parts. In: Malik, H., Srivastava, S., Sood, Y., Ahmad, A. (eds) Applications of Artificial Intelligence Techniques in Engineering. Advances in Intelligent Systems and Computing, 698. Springer, Singapore. https://doi.org/10.1007/978-981-13-1819-1_44
  • Kılıçaslan, C. ve İnce, U., 2017. Civata soğuk dövme işleminde kalıp ömrünün arttırılması: Dövme kademe tasarımının etkisi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(5), 961-967. https://doi.org/10.16984/saufenbilder.286029
  • Knoerr, M., Lange, K. ve Altan, T., 1994. Fatigue failure of cold forging tooling: Causes and possible solutions through fatigue analysis. Journal of Materials Processing Technology, 46(1-2), 57-71. https://doi.org/10.1016/0924-0136(94)90102-3
  • Ku, T. W., Kim, L. H. ve Kang, B. S., 2013. Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Materials & Design, 49, 368-385. https://doi.org/10.1016/j.matdes.2013.01.030
  • Lee, Y., Lee, J. ve Ishikawa, T., 2002. Analysis of the elastic characteristics at forging die for the cold forged dimensional accuracy. Journal of Materials Processing Technology, 130-131, 532-539. https://doi.org/10.1016/S0924-0136(02)00800-2
  • Pedersen, T. Ø., 2000. Numerical modelling of cyclic plasticity and fatigue damage in cold-forging tools. International Journal of Mechanical Sciences, 42(4), 799-818. https://doi.org/10.1016/S0020-7403(99)00019-3
  • Petrescu, D., Savage, S. C. ve Hodgson, P. D., 2002. Simulation of the fastener manufacturing process. Journal of Materials Processing Technology, 125-126, 361-368. https://doi.org/10.1016/S0924-0136(02)00301-1
  • Saroosh, M. A., Lee, H. C., Im, Y. T., Choi, S. W. ve Lee, D. L., 2007. High cycle fatigue life prediction of cold forging tools based on workpiece material property. Journal of Materials Processing Technology, 191(1-3), 178-181. https://doi.org/10.1016/j.jmatprotec.2007.03.015
  • Varfolomeev, I., Moroz, S., Siegele, D., Kadau, K. ve Amann, C., 2017. Study on fatigue crack initiation and propagation from forging defects. Procedia Structural Integrity, 7, 359-367. https://doi.org/10.1016/j.prostr.2017.11.100
  • Thara, S., Prommul, K. ve Watcharasrisamroeng, B. 2019. The optimization of tool life by fillet radiuson cold forging die using finite element and low cycle fatigue theory. International Journal of Mechanical and Production Engineering Research and Development, 9(2). https://doi.org/10.24247/ijmperdapr201957
  • Toparlı, M. B., 2019. Soğuk dövme kalıplarında ömür artışı elde etmek için baskı hasar mekanizmasının belirlenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 157-171. https://doi.org/10.17482/uumfd.507586
  • Winiarski, G., Bulzak, T. Wójcik, Ł. ve Szala, M. 2020. Numerical analysis of a six stage forging process for producing hollow flanged parts from tubular blanks. Advances in Science and Technology, 14, 201-208. https://doi.org/10.12913/22998624/116748
  • Zhang, Z., Yang, F., Shao, X., Gu, J., Zha, G., Tu, H. Y. ve Xie, B., 2021. Finite element analysis and life prediction of pre-stressed composed dies in cold extrusion process. Journal of Multiscale Modelling, 13, 2142001. https://doi.org/10.1142/S1756973721420014
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Research Article
Authors

Tuğçe Yağcı 0000-0001-7478-9882

Alper Baygut 0000-0003-4775-1066

Osman Çulha 0000-0003-1611-8452

Early Pub Date July 21, 2025
Publication Date August 4, 2025
Submission Date September 11, 2024
Acceptance Date January 27, 2025
Published in Issue Year 2025 Volume: 25 Issue: 4

Cite

APA Yağcı, T., Baygut, A., & Çulha, O. (2025). Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(4), 916-927. https://doi.org/10.35414/akufemubid.1548540
AMA Yağcı T, Baygut A, Çulha O. Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. August 2025;25(4):916-927. doi:10.35414/akufemubid.1548540
Chicago Yağcı, Tuğçe, Alper Baygut, and Osman Çulha. “Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme Ve Simülasyon Çalışmaları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 4 (August 2025): 916-27. https://doi.org/10.35414/akufemubid.1548540.
EndNote Yağcı T, Baygut A, Çulha O (August 1, 2025) Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 4 916–927.
IEEE T. Yağcı, A. Baygut, and O. Çulha, “Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 4, pp. 916–927, 2025, doi: 10.35414/akufemubid.1548540.
ISNAD Yağcı, Tuğçe et al. “Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme Ve Simülasyon Çalışmaları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/4 (August2025), 916-927. https://doi.org/10.35414/akufemubid.1548540.
JAMA Yağcı T, Baygut A, Çulha O. Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:916–927.
MLA Yağcı, Tuğçe et al. “Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme Ve Simülasyon Çalışmaları”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 4, 2025, pp. 916-27, doi:10.35414/akufemubid.1548540.
Vancouver Yağcı T, Baygut A, Çulha O. Bağlantı Elemanı Üretim Verimliliğini Artırmak İçin Soğuk Dövme Prosesinde Tasarım İyileştirme ve Simülasyon Çalışmaları. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(4):916-27.