Effect of Ultrasound and Osmotic Dehydration Treatments on Rehydration Kinetics, Color and Sensory Properties of Dried Pears
Year 2025,
Volume: 25 Issue: 6, 1399 - 1406
Betül Aslan
,
Dilek Demirbüker Kavak
Abstract
The aim of this study is to investigate the effect of ultrasound and osmotic dehydration treatments on rehydration kinetics, color and sensory characteristics of dried pears (Pyrus communis L. cv. Deveci). Pear slices were pre-treated for osmatic dehydration and ultrasound prior to convective drying at 60, 70 and 80 °C. Rehydration was carried out at 45 °C for dried pear samples. The rehydration kinetics were investigated and results were correlated to the main effects of osmatic and ultrasonic pre-treatments, as well as air-drying temperature. The Peleg and Weibull models were employed to describe rehydration kinetics. Both models effectively described the rehydration kinetics; however, the Weibull model demonstrated statistically superior accuracy with higher R² values and lower error values (RMSE < 0.005). According to the results it was observed that ultrasonic treatment enhances water uptake during rehydration. Both models effectively described the rehydration kinetics. The highest total color change (∆E:22.69) value was obtained for the samples dried at 80 °C. Samples pretreated with both ultrasound and osmotic treatments and dried at 60 °C received higher overall acceptability scores compared to other samples.
Ethical Statement
The authors declare that they comply with all ethical standards
Supporting Institution
Afyon Kocatepe University Scientific Research Projects Coordination Office (Project No: AKU BAPK-23.FENBİL.21).
Thanks
This research was supported by Afyon Kocatepe University Scientific Research Projects Coordination Office (Project No: AKU BAPK-23.FENBİL.21). The authors would like to thank Fruit Research Institute, (MAREM, Eğirdir-Isparta ) for kindly providing the sample materials used in this study.
References
-
Akharume, F., Singh, K., Jaczynski, J., and Sivanandan, L., 2018. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT - Food Science and Technology, 90, 61–69.
https://doi.org/10.1016/j.lwt.2017.12.012
-
Altuğ, T., 1993. Duyusal Test Teknikleri, Ege Üniversitesi Mühendislik Fakültesi Yayınları, 28.
-
Benseddik, A., Azzi, A., Zidoune, M., Khanniche, R. and Besombes, C. 2019. Empirical and diffusion models of rehydration process of differently dried pumpkin slices. Journal of the Saudi Society of Agricultural Sciences, 18(4), 401-410.
-
Cevher, E. Y. and Yıldırım, D., 2022. Using artificial neural network application in modeling the mechanical properties of loading position and storage duration of pear fruit. Processes, 10(11), 2245.
https://doi.org/10.3390/pr10112245
-
Demirtaş, C., 2023. Evaluation of drying methods for drying kinetics and color parameters of pears. Master’s thesis, Yıldız Technical University Graduate School of Natural and Applied Sciences, İstanbul, 77.
-
Demiray, E. and Tülek, Y., 2016. Kurutulmuş bamyaların rehidrasyon kinetiği. Akademik Gıda, 14(4), 368-374.
-
Ertekin, C. and Yaldiz, O., 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(4), 349–359.
-
Górnicki, K., Choińska, A. and Kaleta, A. 2020. Effect of variety on rehydration characteristics of dried apples. Processes, 8(11), 1454.
https://doi.org/10.3390/pr8111454
-
Kavak, D. D., 2019. Pectin based edible coating application on fresh-cut Deveci pears. Afyon Kocatepe University – Journal of Science and Engineering, 19(3), 709-715.
https://doi.org/10.35414/akufemubid.589067.
-
Khatun, P., Karmakar, A. and Chakraborty, I., 2024. Microwave-vacuum drying: Modeling validation of drying and rehydration kinetics, moisture diffusivity and physicochemical properties of dried dragon fruit slices. Food and Humanity, 2, 100292.
https://doi.org/10.1016/j.foohum.2024.100292
-
Korese, J. K. and Achaglinkame, M. A., 2024. Convective drying of Gardenia erubescens fruits: Effect of pretreatment, slice thickness and drying air temperature on drying kinetics and product quality. Heliyon, 10(4), e25968.
https://doi.org/10.1016/j.heliyon.2024.e25968
-
Krokida, M. K., Karathanos, V. T. and Maroulis, Z. B., 2000. Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Drying Technology, 18(4-5), 937-950.
https://doi.org/10.1080/07373930008917745
-
Kuş, S., 2016. Drying behavior and modeling of quince and pear fruits using microwave energy. Master’s thesis, Namık Kemal University Graduate School of Natural and Applied Sciences, Tekirdağ, 69.
-
Lewicki, P. P., 1998. Some remarks on rehydration of dried foods. Journal of Food Engineering, 36, 81–87.
-
Marques, L. G., Prado, M. M. and Freire, J. T., 2009. Rehydration characteristics of freeze-dried tropical fruits. LWT - Food Science and Technology, 42(7), 1232-1237.
https://doi.org/10.1016/j.lwt.2009.02.012
-
Miano, A. C., Ibarz, A, and Duarte Augusto, P. E., 2016. Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413–419.
-
Özcan, M. M. and Uslu, N., 2023. The effect of thermal treatment on antioxidant activity and changes in bioactive and phenolic compounds of three pear (Pyrus spp.) varieties slices. Food and Humanity, 1, 281–288.
https://doi.org/10.1016/j.foohum.2023.05.019
-
Peleg, M., 1988. An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
-
Planinić, M., Velić, D., Tomas, S., et al., 2005. Modelling of drying and rehydration of carrots using Peleg's model. European Food Research and Technology, 221(4), 446–451.
https://doi.org/10.1007/s00217-005-1200-x
-
Ricce, C., Rojas, M. L., Miano, A. C., Siche, R. and Duarte Augusto, P. E., 2016. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89(1), 701-708.
https://doi.org/10.1016/j.foodres.2016.09.030
-
Salehi, F., Goharpour, K. and Razavi Kamran, H., 2024. Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results in Engineering, 21, 101690.
https://doi.org/10.1016/j.rineng.2023.101690
-
Santos, K. C., Guedes, J. S., Rojas, M. L., Carvalho, G. R. and Augusto, P. E. D., 2021. Enhancing carrot convective drying by combining ethanol and ultrasound as pretreatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonic Sonochemistry, 70(1), 1–14.
https://doi.org/10.1016/j.ultsonch.2020.105304
-
Senadeera, W., Bhandari, B., Young, G., and Wijesinghe, B., 2000. Physical property changes of fruits and vegetables during hot air drying. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences Science Publishers, Inc., 149–166.
-
Shamaei, S., Emam-Djomeh, Z. and Moini, S. (2012). Ultrasound-assisted osmotic dehydration of cranberries: Effect of finish drying methods and ultrasound frequency on textural properties. Journal of Texture Studies, 43, 133–141.
-
Yılmaz, M., 2022. Optimization of convective and microwave drying conditions for osmotically dehydrated pear slices. Doctoral dissertation, Bolu Abant İzzet Baysal University Graduate School of Natural and Applied Sciences, Bolu, 142.
Ultrases ve Osmotik Dehidrasyon Ön İşlemlerinin Kurutulmuş Armutların Rehidrasyon Kinetiği, Renk ve Duyusal Özellikleri Üzerine Etkisi
Year 2025,
Volume: 25 Issue: 6, 1399 - 1406
Betül Aslan
,
Dilek Demirbüker Kavak
Abstract
Bu çalışmanın amacı, ultrases ve ozmotik dehidrasyon uygulamalarının kurutulmuş armutların (Pyrus communis L. cv. Deveci) rehidrasyon kinetiği, renk ve duyusal özellikleri üzerine etkisinin araştırılmasıdır. Armut dilimleri 60, 70 ve 80 °C'de konvektif kurutmadan önce ozmotik dehidrasyon ve ultrases ön işlemlerine tabi tutulmuştur. Kurutulmuş armut örnekleri için 45 °C'de rehidrasyon işlemi gerçekleştirilmiştir. Rehidrasyon kinetiği incelenmiş olup, elde edilen sonuçlar; ozmotik ve ultrasonik ön işlemlerin yanı sıra kurutma havası sıcaklığının etkileriyle ilişkilendirilmiştir. Rehidrasyon kinetiğini tanımlamak ise Peleg ve Weibull modelleri kullanılmıştır. Her iki model de rehidrasyon kinetiğini etkili bir şekilde tanımlamış olmakla birlikte, Weibull modeli daha yüksek R² ve daha düşük hata değerleri (RMSE < 0.005) ile istatistiksel üstünlük göstermiştir. Elde edilen sonuçlara göre ultrasonik işlemin rehidrasyon sırasında su alımını artırdığ tespit edilmiştir. En yüksek toplam renk değişimi 80°C'de kurutulan numuneler için 22.69 olarak bulunmuştur. Ultrases ve ozmotik ön işlem uygulanmış ve 60 °C'de kurutulmuş armut örnekleri, diğer örneklere kıyasla daha yüksek genel kabuledilebilirlik skorları almıştır.
References
-
Akharume, F., Singh, K., Jaczynski, J., and Sivanandan, L., 2018. Microbial shelf stability assessment of osmotically dehydrated smoky apples. LWT - Food Science and Technology, 90, 61–69.
https://doi.org/10.1016/j.lwt.2017.12.012
-
Altuğ, T., 1993. Duyusal Test Teknikleri, Ege Üniversitesi Mühendislik Fakültesi Yayınları, 28.
-
Benseddik, A., Azzi, A., Zidoune, M., Khanniche, R. and Besombes, C. 2019. Empirical and diffusion models of rehydration process of differently dried pumpkin slices. Journal of the Saudi Society of Agricultural Sciences, 18(4), 401-410.
-
Cevher, E. Y. and Yıldırım, D., 2022. Using artificial neural network application in modeling the mechanical properties of loading position and storage duration of pear fruit. Processes, 10(11), 2245.
https://doi.org/10.3390/pr10112245
-
Demirtaş, C., 2023. Evaluation of drying methods for drying kinetics and color parameters of pears. Master’s thesis, Yıldız Technical University Graduate School of Natural and Applied Sciences, İstanbul, 77.
-
Demiray, E. and Tülek, Y., 2016. Kurutulmuş bamyaların rehidrasyon kinetiği. Akademik Gıda, 14(4), 368-374.
-
Ertekin, C. and Yaldiz, O., 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63(4), 349–359.
-
Górnicki, K., Choińska, A. and Kaleta, A. 2020. Effect of variety on rehydration characteristics of dried apples. Processes, 8(11), 1454.
https://doi.org/10.3390/pr8111454
-
Kavak, D. D., 2019. Pectin based edible coating application on fresh-cut Deveci pears. Afyon Kocatepe University – Journal of Science and Engineering, 19(3), 709-715.
https://doi.org/10.35414/akufemubid.589067.
-
Khatun, P., Karmakar, A. and Chakraborty, I., 2024. Microwave-vacuum drying: Modeling validation of drying and rehydration kinetics, moisture diffusivity and physicochemical properties of dried dragon fruit slices. Food and Humanity, 2, 100292.
https://doi.org/10.1016/j.foohum.2024.100292
-
Korese, J. K. and Achaglinkame, M. A., 2024. Convective drying of Gardenia erubescens fruits: Effect of pretreatment, slice thickness and drying air temperature on drying kinetics and product quality. Heliyon, 10(4), e25968.
https://doi.org/10.1016/j.heliyon.2024.e25968
-
Krokida, M. K., Karathanos, V. T. and Maroulis, Z. B., 2000. Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Drying Technology, 18(4-5), 937-950.
https://doi.org/10.1080/07373930008917745
-
Kuş, S., 2016. Drying behavior and modeling of quince and pear fruits using microwave energy. Master’s thesis, Namık Kemal University Graduate School of Natural and Applied Sciences, Tekirdağ, 69.
-
Lewicki, P. P., 1998. Some remarks on rehydration of dried foods. Journal of Food Engineering, 36, 81–87.
-
Marques, L. G., Prado, M. M. and Freire, J. T., 2009. Rehydration characteristics of freeze-dried tropical fruits. LWT - Food Science and Technology, 42(7), 1232-1237.
https://doi.org/10.1016/j.lwt.2009.02.012
-
Miano, A. C., Ibarz, A, and Duarte Augusto, P. E., 2016. Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413–419.
-
Özcan, M. M. and Uslu, N., 2023. The effect of thermal treatment on antioxidant activity and changes in bioactive and phenolic compounds of three pear (Pyrus spp.) varieties slices. Food and Humanity, 1, 281–288.
https://doi.org/10.1016/j.foohum.2023.05.019
-
Peleg, M., 1988. An empirical model for the description of moisture sorption curves. Journal of Food Science, 53(4), 1216-1217.
https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
-
Planinić, M., Velić, D., Tomas, S., et al., 2005. Modelling of drying and rehydration of carrots using Peleg's model. European Food Research and Technology, 221(4), 446–451.
https://doi.org/10.1007/s00217-005-1200-x
-
Ricce, C., Rojas, M. L., Miano, A. C., Siche, R. and Duarte Augusto, P. E., 2016. Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89(1), 701-708.
https://doi.org/10.1016/j.foodres.2016.09.030
-
Salehi, F., Goharpour, K. and Razavi Kamran, H., 2024. Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices. Results in Engineering, 21, 101690.
https://doi.org/10.1016/j.rineng.2023.101690
-
Santos, K. C., Guedes, J. S., Rojas, M. L., Carvalho, G. R. and Augusto, P. E. D., 2021. Enhancing carrot convective drying by combining ethanol and ultrasound as pretreatments: Effect on product structure, quality, energy consumption, drying and rehydration kinetics. Ultrasonic Sonochemistry, 70(1), 1–14.
https://doi.org/10.1016/j.ultsonch.2020.105304
-
Senadeera, W., Bhandari, B., Young, G., and Wijesinghe, B., 2000. Physical property changes of fruits and vegetables during hot air drying. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences Science Publishers, Inc., 149–166.
-
Shamaei, S., Emam-Djomeh, Z. and Moini, S. (2012). Ultrasound-assisted osmotic dehydration of cranberries: Effect of finish drying methods and ultrasound frequency on textural properties. Journal of Texture Studies, 43, 133–141.
-
Yılmaz, M., 2022. Optimization of convective and microwave drying conditions for osmotically dehydrated pear slices. Doctoral dissertation, Bolu Abant İzzet Baysal University Graduate School of Natural and Applied Sciences, Bolu, 142.