Research Article
BibTex RIS Cite

3B Baskı ile Farklı Kontur Sayısı ve Dolgu Deseni ile Üretilen PLA Parçaların Çekme Dayanımına Deformasyon Hızının Etkisinin Araştırılması

Year 2025, Volume: 25 Issue: 6, 1481 - 1490

Abstract

Günümüz eklemeli imalat teknolojileriyle polimer, seramik, metal ve kompozit malzemelerden, mühendislik uygulamalarında talep edilen özellikleri karşılayacak karmaşık geometrili parçaların üretimi mümkün hale gelmiştir. Özellikle, kolay ve ucuz bir şekilde temin edilebilirliğinin yanı sıra, üretim parametrelerinin optimizasyonu ile arzu edilen dayanım değerlerini karşılayan polimer malzemeler sıklıkla malzeme ekstrüzyon esaslı eriyik yığma modelleme ile üretilebilmektedir. Endüstriyel uygulamalar olarak biyomedikalden, otomotiv sektörüne dek bir çok alanda tercih edilen polimerlerden biri de polilaktik asittir. Bu çalışmanın amacı ise, sıklıkla kullanılan polilaktik asit malzemeden üretilen eklemeli imalat ürünlerinde üretim parametrelerinden olan dolgu deseni ve kontur sayısı ile bir test parametresi olan deformasyon hızının ilgili ürünlerin çekme dayanım değerlerine olan etkisini incelemektir. Bu bağlamda, üç farklı dolgu deseni (zikzak, üçgen ve kübik) ve üç farklı kontur sayısı (2, 3 ve 4) ile üretilen çekme test numuneleri üç farklı deformasyon hızında (1, 5 ve 25 mm/dakika) çekme testine tabi tutularak çekme dayanımları elde edilmiş ve kırılma yüzeyleri incelenmiştir. Elde edilen bulgular neticesinde, kontur sayısının artmasıyla birlikte çekme dayanım değerlerinin arttığı, dolgu desenlerinin etkilerinin deformasyon hızına bağlı olarak değişim gösterdiği ve son olarak da artan deformasyon hızı ile birlikte çekme dayanım değerlerinin de arttığı tespit edilmiştir.

References

  • Altahir, S., Gomaa, R., Yilmaz, C., 2024. Effect of strain rate on the tensile properties of 3D-printed PLA specimens with fused deposition modelling. Journal of Advances in Manufacturing Engineering, 5(2), 37-46. https://doi.org/10.14744/ytu.jame.2024.00006
  • Balasubramanian, M., Saravanan, R., Shanmugam, V., 2024. Impact of strain rate on mechanical properties of polylatic acid fabricated by fusion deposition modeling. Polymers for Advanced Technologies, 35(3), e6335. https://doi.org/10.1002/pat.6335
  • Baran, E. H., and Erbil, H. Y., 2019. Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces, 3(2), 43. https://doi.org/10.3390/colloids3020043
  • Bolat, Ç., Üresin, B., Gene, T. E., Çebi, A., Aslan, M. T., 2025. Effect of liquid media, waiting time, and layer height on drop-weight impact performance of polylactic acid produced by additive manufacturing. Journal of Polymer Research, 32(1), 1-17. https://doi.org/10.1007/s10965-025-04259-6
  • Demir, S., and Yüksel, C., 2024. A comparative analysis of printing parameter effects of tensile and flexural specimens produced with two different printers by the TAGUCHI method. Progress in Additive Manufacturing, 1-14. https://doi.org/10.1007/s40964-024-00648-3
  • Ergene, B., and Yalçın, B., 2023. Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 201-218. https://doi.org/10.17341/gazimmfd.945650
  • Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., Vaxevanidis, N. M., 2023. Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials. Materials Today: Proceedings, 93, 824-830. https://doi.org/10.1016/j.matpr.2023.08.276
  • García, E., Núñez, P. J., Caminero, M. A., Chacón, J. M., Kamarthi, S.,2022. Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Composites Part B: Engineering, 235, 109766. https://doi.org/10.1016/j.compositesb.2022.109766
  • Gupta, M. K., Korkmaz, M. E., Shibi, C. S., Ross, N. S., Singh, G., Demirsöz, R., Jamil, M., Królczyk, G. M., 2023. Tribological characteristics of additively manufactured 316 stainless steel against 100 cr6 alloy using deep learning. Tribology International, 188, 108893. https://doi.org/10.1016/j.triboint.2023.108893
  • Hikmat, M., Rostam, S., Ahmed, Y. M., 2021. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering, 11, 100264. https://doi.org/10.1016/j.rineng.2021.100264
  • Iftekar, S. F., Aabid, A., Amir, A., Baig, M., 2023. Advancements and limitations in 3D printing materials and technologies: a critical review. Polymers, 15(11), 2519. https://doi.org/10.3390/polym15112519
  • Ilie, N., 2023. Cytotoxic, elastic-plastic and viscoelastic behavior of aged, modern resin-based dental composites. Bioengineering, 10(2), 235. https://doi.org/10.3390/bioengineering10020235
  • Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., Haq, M. I. U., 2022. 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 33-42. https://doi.org/10.1016/j.susoc.2021.09.004
  • Kakanuru, P., and Pochiraju, K., 2020. Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Additive Manufacturing, 36, 101529. https://doi.org/10.1016/j.addma.2020.101529
  • Kanishka, K., and Acherjee, B., 2023. Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges. Journal of Manufacturing Processes, 107, 574-619. https://doi.org/10.1016/j.jmapro.2023.10.024
  • Kaptan, A., and Kartal, F., (2021). The Effect of Annealing Process Applied To Pla Parts Manufactured By Fused Deposıtıon Modeling on Mechanical Properties. 2nd Internatıonal Halich Congress on Multidisciplinary Scientific Research. Istanbul, Türkiye, pp. 496-502.
  • Kartal, F., and Kaptan, A. (2023-a). Investigating the effect of nozzle diameter on tensile strength in 3D-printed polylactic acid parts. Black Sea Journal of Engineering and Science, 6(3), 276-287. https://doi.org/10.34248/bsengineering.1287141
  • Kartal, F., and Kaptan, A. (2023-b). Effects of annealing temperature and duration on mechanical properties of PLA plastics produced by 3D Printing. European Mechanical Science, 7(3), 152-159. https://doi.org/10.26701/ems.1290961
  • Kechagias, J. D., Vidakis, N., Petousis, M., Mountakis, N., 2023. A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing. Materials and Manufacturing Processes, 38(8), 941-953. https://doi.org/10.1080/10426914.2022.2089895
  • Khosravani, M. R., Berto, F., Ayatollahi, M. R., Reinicke, T., 2022. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Scientific Reports, 12(1), 1016. https://doi.org/10.1038/s41598-022-05005-4
  • Lubombo, C., Huneault, M. A., 2018. Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Materials Today Communications, 17, 214-228. https://doi.org/10.1016/j.mtcomm.2018.09.017
  • Luo, J., Luo, Q., Zhang, G., Li, Q., and Sun, G., 2022. On strain rate and temperature dependent mechanical properties and constitutive models for additively manufactured polylactic acid (PLA) materials. Thin-Walled Structures, 179, 109624. https://doi.org/10.1016/j.tws.2022.109624
  • Ma, T., Zhang, Y., Ruan, K., Guo, H., He, M., Shi, X., Guo, Y., Kong, J., Gu, J., 2024. Advances in 3D printing for polymer composites: A review. InfoMat, e12568. https://doi.org/10.1002/inf2.12568
  • Maraş, S., Bolat, Ç., 2025. Free Vibration Analysis of 3D-printed ABS, PET-G and PLA Curved Beam: Effects of Opening Angle, Curvature Radius, and Part Thickness. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 206-214. https://doi.org/10.35414/akufemubid.1519102
  • Nötzel, D., Eickhoff, R., Pfeifer, C., Hanemann, T., 2021. Printing of zirconia parts via fused filament fabrication. Materials, 14(19), 5467. https://doi.org/10.3390/ma14195467
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Puppi, D., and Chiellini, F., 2020. Biodegradable polymers for biomedical additive manufacturing. Applied materials today, 20, 100700. https://doi.org/10.1016/j.apmt.2020.100700
  • Rodríguez-Reyna, S. L., Mata, C., Díaz-Aguilera, J. H., Acevedo-Parra, H. R., Tapia, F., 2022. Mechanical properties optimization for PLA, ABS and Nylon+ CF manufactured by 3D FDM printing. Materials Today Communications, 33, 104774. https://doi.org/10.1016/j.mtcomm.2022.104774
  • Rouf, S., Raina, A., Haq, M. I. U., Naveed, N., Jeganmohan, S., Kichloo, A. F., 2022. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158. https://doi.org/10.1016/j.aiepr.2022.02.001
  • Sola, A., Chong, W. J., Simunec, D. P., Li, Y., Trinchi, A., Kyratzis, I. L., Wen, C., 2023. Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication. Polymer Testing, 117, 107859. https://doi.org/10.1016/j.polymertesting.2022.107859
  • Tan, L. J., Zhu, W., Zhou, K., 2020. Recent progress on polymer materials for additive manufacturing. Advanced Functional Materials, 30(43), 2003062. https://doi.org/10.1002/adfm.202003062
  • Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., Hao, W., 2020. Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Composites Part C: Open Access, 3, 100076. https://doi.org/10.1016/j.jcomc.2020.100076
  • Tejedor, J., Cevallos, P. D., Coro, E. S., Pontón, P. I., Guamán, M., Guerrero, V. H., 2024. Effects of annealing on the mechanical, thermal, and physical properties of 3D-printed PLA aged in salt water. Mechanics of Advanced Materials and Structures, 1-15. https://doi.org/10.1080/15376494.2024.2378364
  • Tümer, E. H., and Erbil, H. Y., 2021. Extrusion-based 3D printing applications of PLA composites: a review. Coatings, 11(4), 390. https://doi.org/10.3390/coatings11040390
  • Valino, A. D., Dizon, J. R. C., Espera Jr, A. H., Chen, Q., Messman, J., Advincula, R. C., 2019. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
  • Valvez, S., Silva, A. P., Reis, P. N., 2022. Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts. Polymers, 14(13), 2564. https://doi.org/10.3390/polym14132564
  • Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., Mechtcherine, V., Tzounis, L., 2020. On the strain rate sensitivity of fused filament fabrication (Fff) processed pla, abs, petg, pa6, and pp thermoplastic polymers. Polymers, 12(12), 2924. https://doi.org/10.3390/polym12122924
  • Wang, B., and Kari, L., 2020. A visco-elastic-plastic constitutive model of isotropic magneto-sensitive rubber with amplitude, frequency and magnetic dependency. International Journal of Plasticity, 132, 102756. https://doi.org/10.1016/j.ijplas.2020.102756
  • Wang, S., Ma, Y., Deng, Z., Zhang, S., Cai, J., 2020. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer testing, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483
  • Yao, T., Deng, Z., Zhang, K., Li, S., 2019. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 163, 393-402. https://doi.org/10.1016/j.compositesb.2019.01.025
  • Yeoh, C. K., Cheah, C. S., Pushpanathan, R., Song, C. C., Tan, M. A., Teh, P. L., 2020. Effect of infill pattern on mechanical properties of 3D printed PLA and cPLA. In IOP Conference Series: Materials Science and Engineering (Vol. 957, No. 1, p. 012064). IOP Publishing. https://doi.org/10.1088/1757-899X/957/1/012064
  • Zerankeshi, M. M., Sayedain, S. S., Tavangarifard, M., Alizadeh, R., 2022. Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process. Ceramics International, 48(21), 31850-31858. https://doi.org/10.1016/j.ceramint.2022.07.117
  • Zhan, J., Cai, J., Hasani, R., 2024. Effects of testing speed on the tensile and mode I fracture behavior of specimens printed through the Fused Deposition Modeling technique. Scientific Reports, 14(1), 3960. https://doi.org/10.1038/s41598-024-54780-9
  • Zhou, L. Y., Fu, J., He, Y., 2020. A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials, 30(28), 2000187. https://doi.org/10.1002/adfm.202000187

Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern

Year 2025, Volume: 25 Issue: 6, 1481 - 1490

Abstract

In the contemporary era of additive manufacturing technologies, the production of components with intricate geometries from a diverse array of materials, including polymers, ceramics, metals and composites, has become a reality. In particular, polymer materials, which are easily and inexpensively available, as well as meeting the desired strength values by optimizing the production parameters, can often be produced by material extrusion based fused deposition modelling. Polylactic acid, a polymer of choice in numerous fields, including biomedical and automotive applications, is of particular interest in this study. The objective of this study is to investigate the effect of infill pattern and number of contours, which are production parameters, and deformation rate, which is a test parameter, on the tensile strength values of the related products in additive manufacturing products produced from the frequently used polylactic acid material. To this end, tensile test specimens were fabricated using three distinct infill patterns (zigzag, triangle and cubic) and three different contour numbers (2, 3 and 4). These specimens were then subjected to tensile testing at three different deformation rates (1, 5 and 25 mm/min). The resultant tensile strengths were obtained and the fracture surfaces were examined. The findings indicated that tensile strength values increased with an increase in the number of contours, that the effects of infill patterns varied depending on the deformation rate, and finally, that tensile strength values increased with increasing deformation rate.

References

  • Altahir, S., Gomaa, R., Yilmaz, C., 2024. Effect of strain rate on the tensile properties of 3D-printed PLA specimens with fused deposition modelling. Journal of Advances in Manufacturing Engineering, 5(2), 37-46. https://doi.org/10.14744/ytu.jame.2024.00006
  • Balasubramanian, M., Saravanan, R., Shanmugam, V., 2024. Impact of strain rate on mechanical properties of polylatic acid fabricated by fusion deposition modeling. Polymers for Advanced Technologies, 35(3), e6335. https://doi.org/10.1002/pat.6335
  • Baran, E. H., and Erbil, H. Y., 2019. Surface modification of 3D printed PLA objects by fused deposition modeling: a review. Colloids and interfaces, 3(2), 43. https://doi.org/10.3390/colloids3020043
  • Bolat, Ç., Üresin, B., Gene, T. E., Çebi, A., Aslan, M. T., 2025. Effect of liquid media, waiting time, and layer height on drop-weight impact performance of polylactic acid produced by additive manufacturing. Journal of Polymer Research, 32(1), 1-17. https://doi.org/10.1007/s10965-025-04259-6
  • Demir, S., and Yüksel, C., 2024. A comparative analysis of printing parameter effects of tensile and flexural specimens produced with two different printers by the TAGUCHI method. Progress in Additive Manufacturing, 1-14. https://doi.org/10.1007/s40964-024-00648-3
  • Ergene, B., and Yalçın, B., 2023. Eriyik yığma modelleme (EYM) ile üretilen çeşitli hücresel yapıların mekanik performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(1), 201-218. https://doi.org/10.17341/gazimmfd.945650
  • Fountas, N. A., Zaoutsos, S., Chaidas, D., Kechagias, J. D., Vaxevanidis, N. M., 2023. Statistical modelling and optimization of mechanical properties for PLA and PLA/Wood FDM materials. Materials Today: Proceedings, 93, 824-830. https://doi.org/10.1016/j.matpr.2023.08.276
  • García, E., Núñez, P. J., Caminero, M. A., Chacón, J. M., Kamarthi, S.,2022. Effects of carbon fibre reinforcement on the geometric properties of PETG-based filament using FFF additive manufacturing. Composites Part B: Engineering, 235, 109766. https://doi.org/10.1016/j.compositesb.2022.109766
  • Gupta, M. K., Korkmaz, M. E., Shibi, C. S., Ross, N. S., Singh, G., Demirsöz, R., Jamil, M., Królczyk, G. M., 2023. Tribological characteristics of additively manufactured 316 stainless steel against 100 cr6 alloy using deep learning. Tribology International, 188, 108893. https://doi.org/10.1016/j.triboint.2023.108893
  • Hikmat, M., Rostam, S., Ahmed, Y. M., 2021. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results in Engineering, 11, 100264. https://doi.org/10.1016/j.rineng.2021.100264
  • Iftekar, S. F., Aabid, A., Amir, A., Baig, M., 2023. Advancements and limitations in 3D printing materials and technologies: a critical review. Polymers, 15(11), 2519. https://doi.org/10.3390/polym15112519
  • Ilie, N., 2023. Cytotoxic, elastic-plastic and viscoelastic behavior of aged, modern resin-based dental composites. Bioengineering, 10(2), 235. https://doi.org/10.3390/bioengineering10020235
  • Jandyal, A., Chaturvedi, I., Wazir, I., Raina, A., Haq, M. I. U., 2022. 3D printing–A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers, 3, 33-42. https://doi.org/10.1016/j.susoc.2021.09.004
  • Kakanuru, P., and Pochiraju, K., 2020. Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Additive Manufacturing, 36, 101529. https://doi.org/10.1016/j.addma.2020.101529
  • Kanishka, K., and Acherjee, B., 2023. Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges. Journal of Manufacturing Processes, 107, 574-619. https://doi.org/10.1016/j.jmapro.2023.10.024
  • Kaptan, A., and Kartal, F., (2021). The Effect of Annealing Process Applied To Pla Parts Manufactured By Fused Deposıtıon Modeling on Mechanical Properties. 2nd Internatıonal Halich Congress on Multidisciplinary Scientific Research. Istanbul, Türkiye, pp. 496-502.
  • Kartal, F., and Kaptan, A. (2023-a). Investigating the effect of nozzle diameter on tensile strength in 3D-printed polylactic acid parts. Black Sea Journal of Engineering and Science, 6(3), 276-287. https://doi.org/10.34248/bsengineering.1287141
  • Kartal, F., and Kaptan, A. (2023-b). Effects of annealing temperature and duration on mechanical properties of PLA plastics produced by 3D Printing. European Mechanical Science, 7(3), 152-159. https://doi.org/10.26701/ems.1290961
  • Kechagias, J. D., Vidakis, N., Petousis, M., Mountakis, N., 2023. A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing. Materials and Manufacturing Processes, 38(8), 941-953. https://doi.org/10.1080/10426914.2022.2089895
  • Khosravani, M. R., Berto, F., Ayatollahi, M. R., Reinicke, T., 2022. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Scientific Reports, 12(1), 1016. https://doi.org/10.1038/s41598-022-05005-4
  • Lubombo, C., Huneault, M. A., 2018. Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts. Materials Today Communications, 17, 214-228. https://doi.org/10.1016/j.mtcomm.2018.09.017
  • Luo, J., Luo, Q., Zhang, G., Li, Q., and Sun, G., 2022. On strain rate and temperature dependent mechanical properties and constitutive models for additively manufactured polylactic acid (PLA) materials. Thin-Walled Structures, 179, 109624. https://doi.org/10.1016/j.tws.2022.109624
  • Ma, T., Zhang, Y., Ruan, K., Guo, H., He, M., Shi, X., Guo, Y., Kong, J., Gu, J., 2024. Advances in 3D printing for polymer composites: A review. InfoMat, e12568. https://doi.org/10.1002/inf2.12568
  • Maraş, S., Bolat, Ç., 2025. Free Vibration Analysis of 3D-printed ABS, PET-G and PLA Curved Beam: Effects of Opening Angle, Curvature Radius, and Part Thickness. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 206-214. https://doi.org/10.35414/akufemubid.1519102
  • Nötzel, D., Eickhoff, R., Pfeifer, C., Hanemann, T., 2021. Printing of zirconia parts via fused filament fabrication. Materials, 14(19), 5467. https://doi.org/10.3390/ma14195467
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., Hui, D., 2018. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Puppi, D., and Chiellini, F., 2020. Biodegradable polymers for biomedical additive manufacturing. Applied materials today, 20, 100700. https://doi.org/10.1016/j.apmt.2020.100700
  • Rodríguez-Reyna, S. L., Mata, C., Díaz-Aguilera, J. H., Acevedo-Parra, H. R., Tapia, F., 2022. Mechanical properties optimization for PLA, ABS and Nylon+ CF manufactured by 3D FDM printing. Materials Today Communications, 33, 104774. https://doi.org/10.1016/j.mtcomm.2022.104774
  • Rouf, S., Raina, A., Haq, M. I. U., Naveed, N., Jeganmohan, S., Kichloo, A. F., 2022. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143-158. https://doi.org/10.1016/j.aiepr.2022.02.001
  • Sola, A., Chong, W. J., Simunec, D. P., Li, Y., Trinchi, A., Kyratzis, I. L., Wen, C., 2023. Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication. Polymer Testing, 117, 107859. https://doi.org/10.1016/j.polymertesting.2022.107859
  • Tan, L. J., Zhu, W., Zhou, K., 2020. Recent progress on polymer materials for additive manufacturing. Advanced Functional Materials, 30(43), 2003062. https://doi.org/10.1002/adfm.202003062
  • Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S., Hao, W., 2020. Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Composites Part C: Open Access, 3, 100076. https://doi.org/10.1016/j.jcomc.2020.100076
  • Tejedor, J., Cevallos, P. D., Coro, E. S., Pontón, P. I., Guamán, M., Guerrero, V. H., 2024. Effects of annealing on the mechanical, thermal, and physical properties of 3D-printed PLA aged in salt water. Mechanics of Advanced Materials and Structures, 1-15. https://doi.org/10.1080/15376494.2024.2378364
  • Tümer, E. H., and Erbil, H. Y., 2021. Extrusion-based 3D printing applications of PLA composites: a review. Coatings, 11(4), 390. https://doi.org/10.3390/coatings11040390
  • Valino, A. D., Dizon, J. R. C., Espera Jr, A. H., Chen, Q., Messman, J., Advincula, R. C., 2019. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
  • Valvez, S., Silva, A. P., Reis, P. N., 2022. Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts. Polymers, 14(13), 2564. https://doi.org/10.3390/polym14132564
  • Vidakis, N., Petousis, M., Velidakis, E., Liebscher, M., Mechtcherine, V., Tzounis, L., 2020. On the strain rate sensitivity of fused filament fabrication (Fff) processed pla, abs, petg, pa6, and pp thermoplastic polymers. Polymers, 12(12), 2924. https://doi.org/10.3390/polym12122924
  • Wang, B., and Kari, L., 2020. A visco-elastic-plastic constitutive model of isotropic magneto-sensitive rubber with amplitude, frequency and magnetic dependency. International Journal of Plasticity, 132, 102756. https://doi.org/10.1016/j.ijplas.2020.102756
  • Wang, S., Ma, Y., Deng, Z., Zhang, S., Cai, J., 2020. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer testing, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483
  • Yao, T., Deng, Z., Zhang, K., Li, S., 2019. A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations. Composites Part B: Engineering, 163, 393-402. https://doi.org/10.1016/j.compositesb.2019.01.025
  • Yeoh, C. K., Cheah, C. S., Pushpanathan, R., Song, C. C., Tan, M. A., Teh, P. L., 2020. Effect of infill pattern on mechanical properties of 3D printed PLA and cPLA. In IOP Conference Series: Materials Science and Engineering (Vol. 957, No. 1, p. 012064). IOP Publishing. https://doi.org/10.1088/1757-899X/957/1/012064
  • Zerankeshi, M. M., Sayedain, S. S., Tavangarifard, M., Alizadeh, R., 2022. Developing a novel technique for the fabrication of PLA-graphite composite filaments using FDM 3D printing process. Ceramics International, 48(21), 31850-31858. https://doi.org/10.1016/j.ceramint.2022.07.117
  • Zhan, J., Cai, J., Hasani, R., 2024. Effects of testing speed on the tensile and mode I fracture behavior of specimens printed through the Fused Deposition Modeling technique. Scientific Reports, 14(1), 3960. https://doi.org/10.1038/s41598-024-54780-9
  • Zhou, L. Y., Fu, J., He, Y., 2020. A review of 3D printing technologies for soft polymer materials. Advanced Functional Materials, 30(28), 2000187. https://doi.org/10.1002/adfm.202000187
There are 44 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Articles
Authors

Emir Uysal 0009-0000-5557-4659

Eray Şen 0009-0003-5158-4114

Bayram Yıldız 0000-0001-9447-8133

Berkay Ergene 0000-0001-6145-1970

Early Pub Date November 13, 2025
Publication Date November 16, 2025
Submission Date February 27, 2025
Acceptance Date June 14, 2025
Published in Issue Year 2025 Volume: 25 Issue: 6

Cite

APA Uysal, E., Şen, E., Yıldız, B., Ergene, B. (2025). Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(6), 1481-1490.
AMA Uysal E, Şen E, Yıldız B, Ergene B. Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. November 2025;25(6):1481-1490.
Chicago Uysal, Emir, Eray Şen, Bayram Yıldız, and Berkay Ergene. “Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing With Different Contour Number and Infill Pattern”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, no. 6 (November 2025): 1481-90.
EndNote Uysal E, Şen E, Yıldız B, Ergene B (November 1, 2025) Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 6 1481–1490.
IEEE E. Uysal, E. Şen, B. Yıldız, and B. Ergene, “Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, pp. 1481–1490, 2025.
ISNAD Uysal, Emir et al. “Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing With Different Contour Number and Infill Pattern”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/6 (November2025), 1481-1490.
JAMA Uysal E, Şen E, Yıldız B, Ergene B. Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1481–1490.
MLA Uysal, Emir et al. “Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing With Different Contour Number and Infill Pattern”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 25, no. 6, 2025, pp. 1481-90.
Vancouver Uysal E, Şen E, Yıldız B, Ergene B. Investigation of the Effect of Deformation Rate on the Tensile Strength of PLA Parts Produced by 3D Printing with Different Contour Number and Infill Pattern. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(6):1481-90.