Research Article
BibTex RIS Cite

Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions

Year 2020, , 132 - 138, 30.06.2020
https://doi.org/10.28955/alinterizbd.740904

Abstract

This study was carried out to determine physical and hydraulic properties of soils under different land use conditions. For this purpose, 9 samples in total (3 samples from each of three different areas; dry farming (D), irrigated land (I) and pastureland (P)) were collected. Soil texture, pH, lime, organic matter, hydraulic conductivity, aggregate stability, bulk density, particle density and porosity were measured. Infiltration measurements were made at each sampling point in the field. However, while there was no difference between the hydraulic conductivity of the fields used for agricultural activities in dry and irrigated conditions, significant differences were determined between the pasture areas and the treated areas. Differences were determined between infiltration measurements of soils and land use status. Positive correlations between infiltration and organic matter, aggregate stability and hydraulic conductivity were obtained as well as negative correlation between bulk density and organic matter content. The lowest infiltration rate was obtained for pastureland soil and the highest infiltration rate for the irrigated land soil. Therefore, increasing the organic matter content of the local soils will make significant contributions to sustainable soil management.

Supporting Institution

Scientific Research Projects Department of Atatürk University

Thanks

This study was produced from the master thesis of Semih ÇAL.

References

  • Agyare, W.A., Vlek, P.L.G., Dikau, R., Andreini, M. and Fosu, M. 2005. Soil Characterization and Modeling using Pedo-Transfer Functions and Artificial Neural Networks. Status Conference, Cologne, Germany, May 17-19.
  • Aksakal, E.L., 2004. Soil Compaction and Its Importance for Agriculture, J. of Agricultural Faculty of Atatürk Univ., 35 (3-4), 247-252.
  • Anonoymus, 2019a. http://www.bigadic.gov.tr/geographic situation
  • Anonoymus, 2019b. https://www.mgm.gov.tr /data evaluation /province and districts statistics .aspx?m=BALIKESIR
  • Balesdent, J., Chenu, C. and Balabane, M., 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research. 53 (3-4): 215-230.
  • Barik, K., 2011. Effects of Barnyard Manure and Beet Pulp Addition on Some Soil Properties. J. of Agricultural Faculty of Atatürk Univ., 42 (2): 133-138.
  • Barik, K., Aksakal E., Islam K.R., Sari S., Angin I., 2014. Spatial variability in soil compaction properties associated with field traffic operations, Catena 120: 122-133.
  • Blake, G.R., K.H. Hartge, 1986. Particle Density in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (Ed. A, Klute). American Society of Agronomy, Madison, Wisconsin, USA.
  • Boadu, F.K., 2000. Hydraulic conductivity of soils from grain-size distribution: new models. J. Geotech. Geoenviron. Eng., 126(8), 739-746.
  • Canbolat, M., ve Demiralay, İ., 1995. The relationship among aggregate stability, bulk density of briquet, modulus of rupture of organic material added soils. Soil Science Society of Turkey. Soil and Environment Symposium. Vol. 2 pp: A-116 A-124, Ankara.
  • Danielson, R.E., and Sutherland, P.L., 1986. Porosity. Methods of soil analysis. Part 1. Physical and mineralogical methods, 443-461.
  • Dao, T.H., 1993. Tillage and Winter Wheat Residue Management Effects on Water Infiltration and Storage, Soil. Sci . Soc. Am. J, 57:(1586-1595)s.
  • Demiralay, İ., 1993. Soil Physical Analysis Methods. Ataturk Univ. Agricultural Faculty Publications. Erzurum, 111-120.
  • Edwards, W.M., 1982. Predicting tillage effects on infiltration. In D.M. Kral (Ed.). Predicting.
  • Erşahin, S., 2001. Toprak Amenajmanı. GOÜ Ziraat Fakültesi Ders Notları Serisi No: 21 Tokat. Syf: 44-57.
  • Gee, G.W., and Bauder, J.W., 1986. Particle-Size Analysis. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9. 383-411, 1188 p, Madison, Wisconsin USA.
  • Göl, C. 2002. Çankırı-Eldivan Yöresinde Arazi Kullanım Türleri İle Bazı Toprak Özellikleri Arasındaki İlişkiler, Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Gülser, C., Candemir, F., İç, S., Demir, Z., 2007. Pedotransfer Modellerle İnce Bünyeli Topraklarda Doygun Hidrolik İletkenliğin Tahmini. V. Ulusal Hidroloji Kongresi, Bildiriler Kitabı, 5-7 Eylül, ODTÜ Ankara, p. 563-569.
  • Hawkes, G.E., Powlson, D.S., Randall, E.W., Tate, K.R., 1984. Nuclear Magnetic Resonance Study of the Phosphorus Species in Alkali Extracts of Soils from Long-term Field Experiments. J. Soil Sci, 35:(35–45)s.
  • Hussen, A.A., 1991. Measurement of Unsaturated Hydraulic Conductivity in the Field, Ph.D.dissertation,150 pp.,Univ.of Ariz.,Tucson.
  • Ishaku, J.M., Gadzama, E.W. and Kaigama, U., 2011. Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. Journal of Geology and Mining Research, 3(4), 105-113.
  • Karahan, G., and Erşahin, S., 2016. Predicting saturated hydraulic conductivity using soil morphological properties. Eurasian J Soil Sci., 5 (1) , 30 – 38.
  • Kemper, W.D., and Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9. 425-442, 1188 p, Madison, Wisconsin USA.
  • McLean, E.O., 1982. Soil Hand Lime Requirement. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 199- 224.
  • Nelson, D.W., Sommers, L. E., 1982. Organic Matter. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 574- 579.
  • Nelson, R.E., 1982. Carbonate and Gypsum. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 191- 197.
  • Osunbıtan, J.A., Oyedele D. J., Adekolu K. O., 2005. Tillage Effects on Bulk Density, Hydraulic Conductivity and Strength of a Loamy Sand Soil in Soutwestern Nigerya. Soil 8 Tillage Research, 82:57-64.
  • Özdemir, N., Öztürk, E., Durmuş, K.Ö.T., 2018. Organik Düzenleyici Uygulamalarının Yapay Yağış Koşullarında Toprakların Bazı Fiziksel Özellikleri ve Toprak Kaybı Arasındaki İlişkiler Üzerine Etkileri. Turk J Agric Res. Vol. 5(3), pp: 191-200.
  • Öztekin, T. and Erşahin, S., 2006. Saturated hydraulic conductivity variation in cultivated and virgin soils. Turk J. Agric. For. 30, 1-10.
  • Öztekin, T., Cemek, B., and Brown, L.C., 2007. Pedotransfer Functions for the Hydraulic Properties of Layered Soils GOÜ. Ziraat Fakültesi Dergisi, 2007, 24 (2), 77-86.
  • Rosas, J., Lopez, O., Missimer, T.M., Coulibaly, K.M., Dehwah, A.H.A., Sesler, K., Lujan, L.R., Mantilla, D., 2014. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater, 52(3), 399–413.
  • Sezen, Y., 2002. Toprak Verimliliği. Atatürk üniversitesi Yayınları No: 922. Ziraat fakültesi Yayınları No: 339. Ders Kitapları Serisi 86, Erzurum.
  • Schwartz, F.W., and Zhang, H., 2003. Fundamentals of Groundwater. John Wiley & Sons, Inc., p. 583.
  • Six, J., Conant, R.T., Paul, E.A., and Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils J. Plant and Soil 241: 155-176.
  • SPSS, 1999. SPSS for Windows, Release 10.0.5., SPSS Inc., USA.
  • Tümsavaş, Z., 2003. Bursa İli Vertisol Büyük Toprak Grubu Topraklarının Verimlilik Durumlarının Toprak Analizleriyle Belirlemnesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 17(2), 9-21.
  • Tüzüner, A., 1990. Toprak Ve Su Analiz Laboratuvarları El Kitabı. Tarım Orman ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Ülgen, N., ve Yurtsever, N., 1974. Türkiye gübreler ve gübreleme rehberi. Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü, Teknik Yayınlar No:28. Ankara.
Year 2020, , 132 - 138, 30.06.2020
https://doi.org/10.28955/alinterizbd.740904

Abstract

References

  • Agyare, W.A., Vlek, P.L.G., Dikau, R., Andreini, M. and Fosu, M. 2005. Soil Characterization and Modeling using Pedo-Transfer Functions and Artificial Neural Networks. Status Conference, Cologne, Germany, May 17-19.
  • Aksakal, E.L., 2004. Soil Compaction and Its Importance for Agriculture, J. of Agricultural Faculty of Atatürk Univ., 35 (3-4), 247-252.
  • Anonoymus, 2019a. http://www.bigadic.gov.tr/geographic situation
  • Anonoymus, 2019b. https://www.mgm.gov.tr /data evaluation /province and districts statistics .aspx?m=BALIKESIR
  • Balesdent, J., Chenu, C. and Balabane, M., 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil & Tillage Research. 53 (3-4): 215-230.
  • Barik, K., 2011. Effects of Barnyard Manure and Beet Pulp Addition on Some Soil Properties. J. of Agricultural Faculty of Atatürk Univ., 42 (2): 133-138.
  • Barik, K., Aksakal E., Islam K.R., Sari S., Angin I., 2014. Spatial variability in soil compaction properties associated with field traffic operations, Catena 120: 122-133.
  • Blake, G.R., K.H. Hartge, 1986. Particle Density in Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods (Ed. A, Klute). American Society of Agronomy, Madison, Wisconsin, USA.
  • Boadu, F.K., 2000. Hydraulic conductivity of soils from grain-size distribution: new models. J. Geotech. Geoenviron. Eng., 126(8), 739-746.
  • Canbolat, M., ve Demiralay, İ., 1995. The relationship among aggregate stability, bulk density of briquet, modulus of rupture of organic material added soils. Soil Science Society of Turkey. Soil and Environment Symposium. Vol. 2 pp: A-116 A-124, Ankara.
  • Danielson, R.E., and Sutherland, P.L., 1986. Porosity. Methods of soil analysis. Part 1. Physical and mineralogical methods, 443-461.
  • Dao, T.H., 1993. Tillage and Winter Wheat Residue Management Effects on Water Infiltration and Storage, Soil. Sci . Soc. Am. J, 57:(1586-1595)s.
  • Demiralay, İ., 1993. Soil Physical Analysis Methods. Ataturk Univ. Agricultural Faculty Publications. Erzurum, 111-120.
  • Edwards, W.M., 1982. Predicting tillage effects on infiltration. In D.M. Kral (Ed.). Predicting.
  • Erşahin, S., 2001. Toprak Amenajmanı. GOÜ Ziraat Fakültesi Ders Notları Serisi No: 21 Tokat. Syf: 44-57.
  • Gee, G.W., and Bauder, J.W., 1986. Particle-Size Analysis. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9. 383-411, 1188 p, Madison, Wisconsin USA.
  • Göl, C. 2002. Çankırı-Eldivan Yöresinde Arazi Kullanım Türleri İle Bazı Toprak Özellikleri Arasındaki İlişkiler, Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Gülser, C., Candemir, F., İç, S., Demir, Z., 2007. Pedotransfer Modellerle İnce Bünyeli Topraklarda Doygun Hidrolik İletkenliğin Tahmini. V. Ulusal Hidroloji Kongresi, Bildiriler Kitabı, 5-7 Eylül, ODTÜ Ankara, p. 563-569.
  • Hawkes, G.E., Powlson, D.S., Randall, E.W., Tate, K.R., 1984. Nuclear Magnetic Resonance Study of the Phosphorus Species in Alkali Extracts of Soils from Long-term Field Experiments. J. Soil Sci, 35:(35–45)s.
  • Hussen, A.A., 1991. Measurement of Unsaturated Hydraulic Conductivity in the Field, Ph.D.dissertation,150 pp.,Univ.of Ariz.,Tucson.
  • Ishaku, J.M., Gadzama, E.W. and Kaigama, U., 2011. Evaluation of empirical formulae for the determination of hydraulic conductivity based on grain-size analysis. Journal of Geology and Mining Research, 3(4), 105-113.
  • Karahan, G., and Erşahin, S., 2016. Predicting saturated hydraulic conductivity using soil morphological properties. Eurasian J Soil Sci., 5 (1) , 30 – 38.
  • Kemper, W.D., and Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. Methods of Soil Analysis.Part 1. Physical and Mineralogical Methods. 2nd Edition. Agronomy No: 9. 425-442, 1188 p, Madison, Wisconsin USA.
  • McLean, E.O., 1982. Soil Hand Lime Requirement. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 199- 224.
  • Nelson, D.W., Sommers, L. E., 1982. Organic Matter. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 574- 579.
  • Nelson, R.E., 1982. Carbonate and Gypsum. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronamy. No: 9 Part 2. Edition P: 191- 197.
  • Osunbıtan, J.A., Oyedele D. J., Adekolu K. O., 2005. Tillage Effects on Bulk Density, Hydraulic Conductivity and Strength of a Loamy Sand Soil in Soutwestern Nigerya. Soil 8 Tillage Research, 82:57-64.
  • Özdemir, N., Öztürk, E., Durmuş, K.Ö.T., 2018. Organik Düzenleyici Uygulamalarının Yapay Yağış Koşullarında Toprakların Bazı Fiziksel Özellikleri ve Toprak Kaybı Arasındaki İlişkiler Üzerine Etkileri. Turk J Agric Res. Vol. 5(3), pp: 191-200.
  • Öztekin, T. and Erşahin, S., 2006. Saturated hydraulic conductivity variation in cultivated and virgin soils. Turk J. Agric. For. 30, 1-10.
  • Öztekin, T., Cemek, B., and Brown, L.C., 2007. Pedotransfer Functions for the Hydraulic Properties of Layered Soils GOÜ. Ziraat Fakültesi Dergisi, 2007, 24 (2), 77-86.
  • Rosas, J., Lopez, O., Missimer, T.M., Coulibaly, K.M., Dehwah, A.H.A., Sesler, K., Lujan, L.R., Mantilla, D., 2014. Determination of hydraulic conductivity from grain-size distribution for different depositional environments. Groundwater, 52(3), 399–413.
  • Sezen, Y., 2002. Toprak Verimliliği. Atatürk üniversitesi Yayınları No: 922. Ziraat fakültesi Yayınları No: 339. Ders Kitapları Serisi 86, Erzurum.
  • Schwartz, F.W., and Zhang, H., 2003. Fundamentals of Groundwater. John Wiley & Sons, Inc., p. 583.
  • Six, J., Conant, R.T., Paul, E.A., and Paustian, K., 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils J. Plant and Soil 241: 155-176.
  • SPSS, 1999. SPSS for Windows, Release 10.0.5., SPSS Inc., USA.
  • Tümsavaş, Z., 2003. Bursa İli Vertisol Büyük Toprak Grubu Topraklarının Verimlilik Durumlarının Toprak Analizleriyle Belirlemnesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi 17(2), 9-21.
  • Tüzüner, A., 1990. Toprak Ve Su Analiz Laboratuvarları El Kitabı. Tarım Orman ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü, Ankara.
  • Ülgen, N., ve Yurtsever, N., 1974. Türkiye gübreler ve gübreleme rehberi. Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü, Teknik Yayınlar No:28. Ankara.
There are 38 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Semih Çal This is me 0000-0002-7309-1922

Kenan Barik This is me 0000-0001-8147-0458

Publication Date June 30, 2020
Acceptance Date November 29, 2019
Published in Issue Year 2020

Cite

APA Çal, S., & Barik, K. (2020). Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions. Alinteri Journal of Agriculture Science, 35(1), 132-138. https://doi.org/10.28955/alinterizbd.740904
AMA Çal S, Barik K. Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions. Alinteri Journal of Agriculture Science. June 2020;35(1):132-138. doi:10.28955/alinterizbd.740904
Chicago Çal, Semih, and Kenan Barik. “Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions”. Alinteri Journal of Agriculture Science 35, no. 1 (June 2020): 132-38. https://doi.org/10.28955/alinterizbd.740904.
EndNote Çal S, Barik K (June 1, 2020) Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions. Alinteri Journal of Agriculture Science 35 1 132–138.
IEEE S. Çal and K. Barik, “Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions”, Alinteri Journal of Agriculture Science, vol. 35, no. 1, pp. 132–138, 2020, doi: 10.28955/alinterizbd.740904.
ISNAD Çal, Semih - Barik, Kenan. “Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions”. Alinteri Journal of Agriculture Science 35/1 (June 2020), 132-138. https://doi.org/10.28955/alinterizbd.740904.
JAMA Çal S, Barik K. Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions. Alinteri Journal of Agriculture Science. 2020;35:132–138.
MLA Çal, Semih and Kenan Barik. “Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions”. Alinteri Journal of Agriculture Science, vol. 35, no. 1, 2020, pp. 132-8, doi:10.28955/alinterizbd.740904.
Vancouver Çal S, Barik K. Hydraulic Conductivity Values of Soils in Different Soil Processing Conditions. Alinteri Journal of Agriculture Science. 2020;35(1):132-8.