Research Article
BibTex RIS Cite
Year 2020, , 50 - 56, 30.06.2020
https://doi.org/10.28955/alinterizbd.741562

Abstract

References

  • Adane, K., Moore, D., and Archer, S. A. 1996. Preliminary studies on the use of Beauueria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the Laboratory. Journal of Stored Products Research, 32(2): 105-113.
  • Alper, M., Güneş, H., Civelek, H. S., Dursun, O., and Eskin, A. 2013. Toxic effects of some native Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) isolates against Tetranychus urticae Koch (Acarina: Tetranychidae), Ceroplastes rusci L. (Homoptera: Coccidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Turkish Bulletin of Entomology, 3: 75-87.
  • Anonymous, 2008. Plant protection technical instructions. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies 5:301 (in Turkish).
  • Anonymous, 2015. Icerya purchasi. Retrieved in April, 12, 2018 from http://www.agri.huji.ac.il/mepests/pest/Icerya_purchasi/.
  • Azizoğlu, U., Bulut, S., and Yılmaz, S. 2012. Biological control in organic agriculture; entomopathogen bioinsecticides. Erciyes University Journal of Institute of Science and Technology, 28(5): 375-381.
  • Bhattarai, SS, Koirala Bishwokarma, S, Gurung, S, Dhami, P, Bishwokarma, Y. 2016. Efficacy of entomopathogens for control of blue pumpkin beetle (Aulacophora nigripennis Motschulsky, 1857) in sponge gourd (Luffa cylindrica) under laboratory condition at Paklihawa, Nepal. GJBAHS 5(2):102-105
  • Boonserm, P., Moonsom, S., Boonchoy, C., Promdonkoy, B., Partasarathy, K., and Torres, J. 2006. Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers. Biochemical and Biophysical Research Communications, 342: 1273-1278.
  • Bravo, A., Gill, S. S., and Soberon, M. 2007. Mode of action of Bacillus thuringiensis cry and cyt toxins and their potential for insect control. Toxicon, 49: 423-435.
  • Carruthers, R. I., and Hural, K. 1990. Fungi as naturally ocurring entomopathogens. Symposia on Molecular and Cellular Biology, 112: 115-138.
  • Castilho, A. M. C., Fraga, M. E., Aguiar-Menezes, E. L., and Rocha Rosa, C. A. 2010. Selection of Metarhizium anisopliae and Beauveria bassiana isolates pathogenic to Atta bisphaerica and Atta sexdens rubropilosa soldiers under laboratory conditions. Ciencia Rural, 40(6): 1243-1249.
  • Dadasoglu, F., Karagöz, K., Kotan, R., Sarıhan, F., Yıldırım, E., Sarac, S., and Haramtepe, F. B. 2013. Biolarvicidal effects of nine Bacillus strains against larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) and nontarget organisms. Egyptian Journal of Biological Pest Control, 23: 35-42.
  • Diehl-Fleig, E., and Silva, M. E. 1986. Patogenicidade de Beauveria bassiana e Metarhizium anisopliae`a formiga sa´uva Atta sexdens piriventris. Boletim do Grupo de Pesquisadores de Controle Biologico, 6: 1255-1268.
  • El-Bendary, M. A. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. Journal of Basic Microbiology, 46(2): 158-170.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, K., and Sezen, M. 2010. Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June- 1 July, Erzurum, Turkey 325-329.
  • Ertürk, Ö., and Yaman, M. 2019. Potential of five non-spore-forming bacteria, originated from the European cockchafer, Melolontha melolontha (Linnaeus, 1758) (Coleoptera: Scarabaeidae), on three economic insect pests. Egyptian Journal of Biological Pest Control, 29: 59. https://doi.org/10.1186/s41938-019-0160-6.
  • Göktürk, T., Tozlu, E., and Kotan, R. 2018. Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker 1851) (Hemiptera: Ricaniidae). Pakistan Journal of Zoology, 50(1): 75-82.
  • Gray, L. R., Jensen, A., Riebe, J., Head, G., and Duan, J. J. 2001. Transgenic Bacillus thtungiensis potato and conventional insectisides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 100: 89-100.
  • Hajaij, M., Carron, A., Deleuze, J., Gaven, B., Sertier-Rio, M., Vigo, G., Thiery, I., Nielsen-LeRoux, C., and Lagneau, C. 2005. Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in Southern France. Microbial Ecology, 50: 475-487.
  • Hoddle, M. S. 2011. Biological control of Icerya purchasi with Rodolia cardinalis in the Galápagos. Retrieved in April, 12, 2019 from http://biocontrol.ucr.edu/rodolia/. Inglis, G.D., Goettel, M. S., Butt, T. M., and Strasser, H. 2001. Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N, eds. Fungi as biocontrol agents: progress problems and potential. CABI Publishing 23-69.
  • Jackson, T. A., and Saville, D. J. 2000. Bioassays of replicating bacteria against soil-dwelling insect pests. Bioassays of entomopathogenic microbes and nematodes. (Eds., Navon, A., Ascher, K.R.S.), CABI New York 73-94.
  • Katı, H. 2008. Bacteria and biological control. Entomopathogens and biological control. (Ed: Demirbağ, Z.), Esen Offset Printing, Trabzon 109-174.
  • Klement, Z., Rudolph, K., and Sands, D. 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Methods in Phytobacteriology. Phytopathology 54: 474-477.
  • Kollar, J., Bakay, L., and Pastor, M. 2016. First record of cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia. Plant Protection Science, 52(3): 217-219.
  • Kumar, S. and Sultana, R. 2017. Effect of entomopathogenic fungi on the food consumption of Acrididae Species. World Academy of Science, Engineering and Technology International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 11(6): 360-364.
  • Lacey, L. A., Frutos, R., Kaya, H. K., and Vail, P. 2001. Insect pathogens as biological control agents: do they have a future. Biological Control, 21: 230-248.
  • Loureiro, E. S., and Monteiro, A. C. 2005. Pathogenicity of isolates of three entomopathogenic fungi against soldiers of Atta sexdentes sexdentes (Linneus, 1758) (Hymenoptera: Formicidae). Revista Árvore, 29(4): 553-561.
  • Marannino, P., Santiago-Álvarez, C., de Lillo, E., and Quesada-Moraga, E. 2006. A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae). Journal of Invertebrate Pathology, 93: 210-213.
  • Miller, I., and Berger, T. 1985. Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Gas Chromatography Application Note, 228-238.
  • Nielson-LeRoux, C., Rao, D. R, Murhy, J. R., Carron, A., Mani, T. R., Hamon, S., and Mulla, M. S. 2001. Various leves of cross-resistance to Bacillus sphaericus strains in Culex pipiens (Diptera: Culicidae) colonies reistant to Bacillus sphaericus strain 2362. Applied and Environmental Microbiology, 67(11): 049-5054.
  • Roy, M. A. 1988. Use of fatty acids for the identification of phytopathogenic bacteria. Plant Disease, 72: 460.
  • Sabbour, M. M., and Abd-El-Aziz, S. 2007. Efficiency of some bioinsecticides against broad bean beetle, Bruchus rufimanus (Coleoptera: Bruchidae). Research Journal of Agriculture and Biological Sciences, 3(2): 67-72.
  • Salisbury, A., and Booth, R. G. 2004. Rodolia cardinalis (Mulsant), The vedalia ladybird (Coleoptera: Coccinellidae) feeding on Icerya purchasi Maskell, cottony cushion scale (Hemiptera: Margarodidae) in London gardens. British Journal of Entomology and Natural History, 17(1243): 1-2.
  • Smith, A. W., Camara-Artigas, A., Brune, D. C., and Allen, J. P. 2005. Implications of high molecular weight oligomers of the binary toksin from Bacillus sphaericus. Journal of Invertebrate Pathology, 88: 27-33.
  • Suganthi, M., Senthilkumar, P., Arvinth, S., and Chandrashekara, K. N. 2017. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora. The Journal of General and Applied Microbiology, 63(4): 222-227.
  • Swiergiel, W., Meyling, N. V., Porcel, M., and Ramert, B. 2015. Soil application of Beauveria bassiana GHA against apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae): Field mortality and fungal persistence. Insect Science, 1-15.
  • Tangtrakulwanich, K., Reddy, G. V. P., Wu, S., Miller, J. H., Ophus, V. L., and Prewett, J. 2014. Efficacy of entomopathogenic fungi and nematodes, and low risk insectisides against wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). Journal of Agricultural Science, 6(5): 1-9.
  • Tozlu, E., Dadasoglu, F., Kotan, R., and Tozlu, G. 2011. Insecticidal effect of some bacterıa on Bruchus dentipes Baudi (Coleoptera: Bruchidae). Fresenius Environmental Bulletin, 20: 918-923.
  • Yıldız, S. S. 2015. The investigation of the entomopathogenic fungus Beauveria bassiana and Paecilomyces fumosoroseus spores the effect on some vector flies. Hacettepe University, Master Thesis, 104 p.
  • Zibaee, A., Bandani, A. R., and Sendi, J. 2013. Pathogenicity of Beauveria bassiana to fall webworm (Hyphantria cunea) (Lepidoptera: Arctiidae) on different host plants. Plant Protection Science, 49:169-176.

The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria

Year 2020, , 50 - 56, 30.06.2020
https://doi.org/10.28955/alinterizbd.741562

Abstract

Cottony cushion scale Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) is an important pest that inhibits the plant growth and development by sap sucking of the plants, and causes sooty mold in more than 200 plant species, especially in citrus plantation. The present study investigated the biological control of the nymphs and adult I. purchasi, which densely populates the mimosa plants (Acacia dealbata) in Artvin, Turkey. For this purpose, one fungal isolate [Beauveria bassiana (ET 10)] and eight bacterial strains [Brevibacillus brevis (CP-1), Bacillus thuringiensis subsp. kenyae (FDP-8, FDP-42), B. thuringiensis (FDP-1), B. sphaericus (FD-49), B. pumilus (TV-67C), Pseudomonas fluorescens (RK-1773) and B. atrophaeus (RK-1774)] were assessed against the nymphs and adult of I. purchasi under controlled conditions. Fungal and bacterial suspensions were sprayed onto 20 nymphs and 20 adults of I. purchasi in plastic boxes. The death rates of the nymphs and adults were recorded. The B. bassiana (ET 10) caused a death up to 100% and 80% in nymphs and adults, respectively. Moreover, P. flourescens (RK 1773) caused 90.5% death of nymphs and B. thuringiensis subsp. kenyae (FDP-42) presented 88.5% death to the nymphs of I. purchase. However, the use of the bacterial strains was not much successful against the adults, as compared to the nymphs.

References

  • Adane, K., Moore, D., and Archer, S. A. 1996. Preliminary studies on the use of Beauueria bassiana to control Sitophilus zeamais (Coleoptera: Curculionidae) in the Laboratory. Journal of Stored Products Research, 32(2): 105-113.
  • Alper, M., Güneş, H., Civelek, H. S., Dursun, O., and Eskin, A. 2013. Toxic effects of some native Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) isolates against Tetranychus urticae Koch (Acarina: Tetranychidae), Ceroplastes rusci L. (Homoptera: Coccidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Turkish Bulletin of Entomology, 3: 75-87.
  • Anonymous, 2008. Plant protection technical instructions. Republic of Turkey Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies 5:301 (in Turkish).
  • Anonymous, 2015. Icerya purchasi. Retrieved in April, 12, 2018 from http://www.agri.huji.ac.il/mepests/pest/Icerya_purchasi/.
  • Azizoğlu, U., Bulut, S., and Yılmaz, S. 2012. Biological control in organic agriculture; entomopathogen bioinsecticides. Erciyes University Journal of Institute of Science and Technology, 28(5): 375-381.
  • Bhattarai, SS, Koirala Bishwokarma, S, Gurung, S, Dhami, P, Bishwokarma, Y. 2016. Efficacy of entomopathogens for control of blue pumpkin beetle (Aulacophora nigripennis Motschulsky, 1857) in sponge gourd (Luffa cylindrica) under laboratory condition at Paklihawa, Nepal. GJBAHS 5(2):102-105
  • Boonserm, P., Moonsom, S., Boonchoy, C., Promdonkoy, B., Partasarathy, K., and Torres, J. 2006. Association of the components of the binary toxin from Bacillus sphaericus in solution and with model lipid bilayers. Biochemical and Biophysical Research Communications, 342: 1273-1278.
  • Bravo, A., Gill, S. S., and Soberon, M. 2007. Mode of action of Bacillus thuringiensis cry and cyt toxins and their potential for insect control. Toxicon, 49: 423-435.
  • Carruthers, R. I., and Hural, K. 1990. Fungi as naturally ocurring entomopathogens. Symposia on Molecular and Cellular Biology, 112: 115-138.
  • Castilho, A. M. C., Fraga, M. E., Aguiar-Menezes, E. L., and Rocha Rosa, C. A. 2010. Selection of Metarhizium anisopliae and Beauveria bassiana isolates pathogenic to Atta bisphaerica and Atta sexdens rubropilosa soldiers under laboratory conditions. Ciencia Rural, 40(6): 1243-1249.
  • Dadasoglu, F., Karagöz, K., Kotan, R., Sarıhan, F., Yıldırım, E., Sarac, S., and Haramtepe, F. B. 2013. Biolarvicidal effects of nine Bacillus strains against larvae of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) and nontarget organisms. Egyptian Journal of Biological Pest Control, 23: 35-42.
  • Diehl-Fleig, E., and Silva, M. E. 1986. Patogenicidade de Beauveria bassiana e Metarhizium anisopliae`a formiga sa´uva Atta sexdens piriventris. Boletim do Grupo de Pesquisadores de Controle Biologico, 6: 1255-1268.
  • El-Bendary, M. A. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. Journal of Basic Microbiology, 46(2): 158-170.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, K., and Sezen, M. 2010. Effect of nitrogen fixing and phosphate-solubilizing Rhizobacteria isolated from Van Lake Basin on the growth and quality properties in wheat and sugar beet. Turkey IV. Organic Farming Symposium, 28 June- 1 July, Erzurum, Turkey 325-329.
  • Ertürk, Ö., and Yaman, M. 2019. Potential of five non-spore-forming bacteria, originated from the European cockchafer, Melolontha melolontha (Linnaeus, 1758) (Coleoptera: Scarabaeidae), on three economic insect pests. Egyptian Journal of Biological Pest Control, 29: 59. https://doi.org/10.1186/s41938-019-0160-6.
  • Göktürk, T., Tozlu, E., and Kotan, R. 2018. Prospects of entomopathogenic bacteria and fungi for biological control of Ricania simulans (Walker 1851) (Hemiptera: Ricaniidae). Pakistan Journal of Zoology, 50(1): 75-82.
  • Gray, L. R., Jensen, A., Riebe, J., Head, G., and Duan, J. J. 2001. Transgenic Bacillus thtungiensis potato and conventional insectisides for Colorado potato beetle management: comparative efficacy and non-target impacts. Entomologia Experimentalis et Applicata, 100: 89-100.
  • Hajaij, M., Carron, A., Deleuze, J., Gaven, B., Sertier-Rio, M., Vigo, G., Thiery, I., Nielsen-LeRoux, C., and Lagneau, C. 2005. Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in Southern France. Microbial Ecology, 50: 475-487.
  • Hoddle, M. S. 2011. Biological control of Icerya purchasi with Rodolia cardinalis in the Galápagos. Retrieved in April, 12, 2019 from http://biocontrol.ucr.edu/rodolia/. Inglis, G.D., Goettel, M. S., Butt, T. M., and Strasser, H. 2001. Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N, eds. Fungi as biocontrol agents: progress problems and potential. CABI Publishing 23-69.
  • Jackson, T. A., and Saville, D. J. 2000. Bioassays of replicating bacteria against soil-dwelling insect pests. Bioassays of entomopathogenic microbes and nematodes. (Eds., Navon, A., Ascher, K.R.S.), CABI New York 73-94.
  • Katı, H. 2008. Bacteria and biological control. Entomopathogens and biological control. (Ed: Demirbağ, Z.), Esen Offset Printing, Trabzon 109-174.
  • Klement, Z., Rudolph, K., and Sands, D. 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Methods in Phytobacteriology. Phytopathology 54: 474-477.
  • Kollar, J., Bakay, L., and Pastor, M. 2016. First record of cottony cushion scale Icerya purchasi (Hemiptera, Monophlebidae) in Slovakia. Plant Protection Science, 52(3): 217-219.
  • Kumar, S. and Sultana, R. 2017. Effect of entomopathogenic fungi on the food consumption of Acrididae Species. World Academy of Science, Engineering and Technology International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 11(6): 360-364.
  • Lacey, L. A., Frutos, R., Kaya, H. K., and Vail, P. 2001. Insect pathogens as biological control agents: do they have a future. Biological Control, 21: 230-248.
  • Loureiro, E. S., and Monteiro, A. C. 2005. Pathogenicity of isolates of three entomopathogenic fungi against soldiers of Atta sexdentes sexdentes (Linneus, 1758) (Hymenoptera: Formicidae). Revista Árvore, 29(4): 553-561.
  • Marannino, P., Santiago-Álvarez, C., de Lillo, E., and Quesada-Moraga, E. 2006. A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae). Journal of Invertebrate Pathology, 93: 210-213.
  • Miller, I., and Berger, T. 1985. Bacteria identification by gas chromatography of whole cell fatty acids. Hewlett-Packard Gas Chromatography Application Note, 228-238.
  • Nielson-LeRoux, C., Rao, D. R, Murhy, J. R., Carron, A., Mani, T. R., Hamon, S., and Mulla, M. S. 2001. Various leves of cross-resistance to Bacillus sphaericus strains in Culex pipiens (Diptera: Culicidae) colonies reistant to Bacillus sphaericus strain 2362. Applied and Environmental Microbiology, 67(11): 049-5054.
  • Roy, M. A. 1988. Use of fatty acids for the identification of phytopathogenic bacteria. Plant Disease, 72: 460.
  • Sabbour, M. M., and Abd-El-Aziz, S. 2007. Efficiency of some bioinsecticides against broad bean beetle, Bruchus rufimanus (Coleoptera: Bruchidae). Research Journal of Agriculture and Biological Sciences, 3(2): 67-72.
  • Salisbury, A., and Booth, R. G. 2004. Rodolia cardinalis (Mulsant), The vedalia ladybird (Coleoptera: Coccinellidae) feeding on Icerya purchasi Maskell, cottony cushion scale (Hemiptera: Margarodidae) in London gardens. British Journal of Entomology and Natural History, 17(1243): 1-2.
  • Smith, A. W., Camara-Artigas, A., Brune, D. C., and Allen, J. P. 2005. Implications of high molecular weight oligomers of the binary toksin from Bacillus sphaericus. Journal of Invertebrate Pathology, 88: 27-33.
  • Suganthi, M., Senthilkumar, P., Arvinth, S., and Chandrashekara, K. N. 2017. Chitinase from Pseudomonas fluorescens and its insecticidal activity against Helopeltis theivora. The Journal of General and Applied Microbiology, 63(4): 222-227.
  • Swiergiel, W., Meyling, N. V., Porcel, M., and Ramert, B. 2015. Soil application of Beauveria bassiana GHA against apple sawfly, Hoplocampa testudinea (Hymenoptera: Tenthredinidae): Field mortality and fungal persistence. Insect Science, 1-15.
  • Tangtrakulwanich, K., Reddy, G. V. P., Wu, S., Miller, J. H., Ophus, V. L., and Prewett, J. 2014. Efficacy of entomopathogenic fungi and nematodes, and low risk insectisides against wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae). Journal of Agricultural Science, 6(5): 1-9.
  • Tozlu, E., Dadasoglu, F., Kotan, R., and Tozlu, G. 2011. Insecticidal effect of some bacterıa on Bruchus dentipes Baudi (Coleoptera: Bruchidae). Fresenius Environmental Bulletin, 20: 918-923.
  • Yıldız, S. S. 2015. The investigation of the entomopathogenic fungus Beauveria bassiana and Paecilomyces fumosoroseus spores the effect on some vector flies. Hacettepe University, Master Thesis, 104 p.
  • Zibaee, A., Bandani, A. R., and Sendi, J. 2013. Pathogenicity of Beauveria bassiana to fall webworm (Hyphantria cunea) (Lepidoptera: Arctiidae) on different host plants. Plant Protection Science, 49:169-176.
There are 39 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Research Articles
Authors

Elif Tozlu This is me 0000-0002-0016-9696

Nasibe Tekiner This is me 0000-0003-2396-7786

Göksel Tozlu This is me 0000-0002-7187-7825

Recep Kotan This is me 0000-0001-6493-8936

Önder Çalmaşur This is me 0000-0001-8921-2381

Temel Göktürk 0000-0003-4064-4225

Fatih Dadaşoğlu This is me 0000-0001-9331-1913

Publication Date June 30, 2020
Acceptance Date March 12, 2020
Published in Issue Year 2020

Cite

APA Tozlu, E., Tekiner, N., Tozlu, G., Kotan, R., et al. (2020). The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria. Alinteri Journal of Agriculture Science, 35(1), 50-56. https://doi.org/10.28955/alinterizbd.741562
AMA Tozlu E, Tekiner N, Tozlu G, Kotan R, Çalmaşur Ö, Göktürk T, Dadaşoğlu F. The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria. Alinteri Journal of Agriculture Science. June 2020;35(1):50-56. doi:10.28955/alinterizbd.741562
Chicago Tozlu, Elif, Nasibe Tekiner, Göksel Tozlu, Recep Kotan, Önder Çalmaşur, Temel Göktürk, and Fatih Dadaşoğlu. “The Investigation of the Biological Control of Icerya Purchasi Maskell, 1878 (Hemiptera: Margarodidae) With Entomopathogenic Fungi and Bacteria”. Alinteri Journal of Agriculture Science 35, no. 1 (June 2020): 50-56. https://doi.org/10.28955/alinterizbd.741562.
EndNote Tozlu E, Tekiner N, Tozlu G, Kotan R, Çalmaşur Ö, Göktürk T, Dadaşoğlu F (June 1, 2020) The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria. Alinteri Journal of Agriculture Science 35 1 50–56.
IEEE E. Tozlu, N. Tekiner, G. Tozlu, R. Kotan, Ö. Çalmaşur, T. Göktürk, and F. Dadaşoğlu, “The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria”, Alinteri Journal of Agriculture Science, vol. 35, no. 1, pp. 50–56, 2020, doi: 10.28955/alinterizbd.741562.
ISNAD Tozlu, Elif et al. “The Investigation of the Biological Control of Icerya Purchasi Maskell, 1878 (Hemiptera: Margarodidae) With Entomopathogenic Fungi and Bacteria”. Alinteri Journal of Agriculture Science 35/1 (June 2020), 50-56. https://doi.org/10.28955/alinterizbd.741562.
JAMA Tozlu E, Tekiner N, Tozlu G, Kotan R, Çalmaşur Ö, Göktürk T, Dadaşoğlu F. The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria. Alinteri Journal of Agriculture Science. 2020;35:50–56.
MLA Tozlu, Elif et al. “The Investigation of the Biological Control of Icerya Purchasi Maskell, 1878 (Hemiptera: Margarodidae) With Entomopathogenic Fungi and Bacteria”. Alinteri Journal of Agriculture Science, vol. 35, no. 1, 2020, pp. 50-56, doi:10.28955/alinterizbd.741562.
Vancouver Tozlu E, Tekiner N, Tozlu G, Kotan R, Çalmaşur Ö, Göktürk T, Dadaşoğlu F. The Investigation of the Biological Control of Icerya purchasi Maskell, 1878 (Hemiptera: Margarodidae) with Entomopathogenic Fungi and Bacteria. Alinteri Journal of Agriculture Science. 2020;35(1):50-6.