Research Article
BibTex RIS Cite
Year 2024, Volume: 12 Issue: 3, 157 - 168, 31.12.2024
https://doi.org/10.17093/alphanumeric.1447211

Abstract

References

  • Bilgil, H. (2021). New grey forecasting model with its application and computer code. AIMS Mathematics, 6(2), 1497–1514. https://doi.org/10.3934/math.2021091
  • Deng, J. L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167-6911(82)80025-x
  • Deng, J. L. (1996). Basic Methods of Grey Systems (4th ed.). Huazhong University of Science, Technology Press.
  • Ding, S., Tao, Z., Zhang, H., & Li, Y. (2022). Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy, 239, 121928. https://doi.org/10.1016/j.energy.2021.121928
  • Erdinc, U., Bilgil, H., & Ozturk, Z. (2024). Novel Fractional Forecasting Model for Time Dependent Real World Cases. REVSTAT-Statistical Journal, 169–188. https://doi.org/10.57805/REVSTAT.V22I2.468
  • Gao, M., Yang, H., Xiao, Q., & Goh, M. (2022). A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector. Renewable Energy, 181, 803–819. https://doi.org/10.1016/j.renene.2021.09.072
  • Javed, S. A. (2023). Posterior Variance Test: Ex ante Evaluation of Grey Forecasting model. International Journal of Grey Systems, 3(1), 17–28. https://doi.org/10.52812/ijgs.71
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Liu, C., Lao, T., Wu, W.-Z., & Xie, W. (2021). Application of optimized fractional grey modelbased variable background value to predict electricity consumption. Fractals, 29(2), 2150038. https://doi.org/10.1142/s0218348x21500389
  • Luo, X., Duan, H., & He, L. (2020). A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy. Energy, 205, 118085. https://doi.org/10.1016/j.energy.2020.118085
  • Ma, X., Wu, W., Zeng, B., Wang, Y., & Wu, X. (2020). The conformable fractional grey system model. ISA Transactions, 96, 255–271. https://doi.org/10.1016/j.isatra.2019.07.009
  • NBS. (2024, ). National Data. https://data.stats.gov.cn/english/easyquery.htm?cn=C01
  • Wei, B., Xie, N., & Hu, A. (2018). Optimal solution for novel grey polynomial prediction model. Applied Mathematical Modelling, 62, 717–727. https://doi.org/10.1016/j.apm.2018.06.035
  • Wu, L., Liu, S., Yao, L., & Yan, S. (2013). The effect of sample size on the grey system model. Applied Mathematical Modelling, 37(9), 6577–6583. https://doi.org/10.1016/j.apm.2013.01.018
  • Wu, L., Liu, S., Yao, L., Yan, S., & Liu, D. (2013). Grey system model with the fractional order accumulation. Communications in Nonlinear Science and Numerical Simulation, 18(7), 1775–1785. https://doi.org/10.1016/j.cnsns.2012.11.017
  • Wu, W.-Z. et al. (2022). A time power-based grey model with conformable fractional derivative and its applications. Chaos, Solitons & Fractals, 155, 111657. https://doi.org/10.1016/j.chaos.2021.111657
  • Wu, W. et al. (2022). A Conformable Fractional Discrete Grey Model CFDGM (1,1) and its Application. International Journal of Grey Systems, 2(1), 5–15. https://doi.org/10.52812/ijgs.36
  • Wu, W., Ma, X., Zhang, Y., Li, W., & Wang, Y. (2020). A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Science of the Total Environment, 707, 135447. https://doi.org/10.1016/j.scitotenv.2019.135447
  • Xie, W., Liu, C., Wu, W.-Z., Li, W., & Liu, C. (2020). Continuous grey model with conformable fractional derivative. Chaos, Solitons & Fractals, 139, 110285. https://doi.org/10.1016/j.chaos.2020.110285
  • Yuxiao, K., Shuhua, M., & Yonghong, Z. (2021). Variable order fractional grey model and its application. Applied Mathematical Modelling, 97, 619–635. https://doi.org/10.1016/j.apm.2021.03.059
  • Yuxiao, K., Shuhua, M., Yonghong, Z., & Huimin, Z. (2020). Fractional derivative multivariable grey model for nonstationary sequence and its application. Journal of Systems Engineering and Electronics, 31(5), 1009–1018. https://doi.org/10.23919/jsee.2020.000075
  • Özcan, T. (2017). Application of Seasonal and Multivariable Grey Prediction Models for Short-Term Load Forecasting. Alphanumeric Journal. https://doi.org/10.17093/alphanumeric.359942
  • Öztürk, Z., Bilgil, H., & Erdinç, Ü. (2022). An optimized continuous fractional grey model for forecasting of the time dependent real world cases. Hacettepe Journal of Mathematics and Statistics, 51(1), 308–326. https://doi.org/10.15672/hujms.939543

China Total Energy Consumption Forecast with Optimized Continuous Conformable Fractional Grey Model

Year 2024, Volume: 12 Issue: 3, 157 - 168, 31.12.2024
https://doi.org/10.17093/alphanumeric.1447211

Abstract

One of the methods used for forecasting of the time series is the fractional grey modeling approach. In this paper, the OCCFGM(1,1) model is utilized to forecasting of the total energy consumption data of China. The optimal values of $\alpha$ and $r$, which are fractional parameters in the model, are calculated using the Brute Force algorithm. Data collected from official sources from 2013 to 2022 are used to build the forecasting model, while data from 2013 to 2020 are employed to evaluate the accuracy at the model. The obtained results indicate that the OCCFGM(1,1) model exhibits superior forecasting performance compared to the other models under consideration.

References

  • Bilgil, H. (2021). New grey forecasting model with its application and computer code. AIMS Mathematics, 6(2), 1497–1514. https://doi.org/10.3934/math.2021091
  • Deng, J. L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288–294. https://doi.org/10.1016/s0167-6911(82)80025-x
  • Deng, J. L. (1996). Basic Methods of Grey Systems (4th ed.). Huazhong University of Science, Technology Press.
  • Ding, S., Tao, Z., Zhang, H., & Li, Y. (2022). Forecasting nuclear energy consumption in China and America: An optimized structure-adaptative grey model. Energy, 239, 121928. https://doi.org/10.1016/j.energy.2021.121928
  • Erdinc, U., Bilgil, H., & Ozturk, Z. (2024). Novel Fractional Forecasting Model for Time Dependent Real World Cases. REVSTAT-Statistical Journal, 169–188. https://doi.org/10.57805/REVSTAT.V22I2.468
  • Gao, M., Yang, H., Xiao, Q., & Goh, M. (2022). A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector. Renewable Energy, 181, 803–819. https://doi.org/10.1016/j.renene.2021.09.072
  • Javed, S. A. (2023). Posterior Variance Test: Ex ante Evaluation of Grey Forecasting model. International Journal of Grey Systems, 3(1), 17–28. https://doi.org/10.52812/ijgs.71
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 65–70. https://doi.org/10.1016/j.cam.2014.01.002
  • Liu, C., Lao, T., Wu, W.-Z., & Xie, W. (2021). Application of optimized fractional grey modelbased variable background value to predict electricity consumption. Fractals, 29(2), 2150038. https://doi.org/10.1142/s0218348x21500389
  • Luo, X., Duan, H., & He, L. (2020). A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy. Energy, 205, 118085. https://doi.org/10.1016/j.energy.2020.118085
  • Ma, X., Wu, W., Zeng, B., Wang, Y., & Wu, X. (2020). The conformable fractional grey system model. ISA Transactions, 96, 255–271. https://doi.org/10.1016/j.isatra.2019.07.009
  • NBS. (2024, ). National Data. https://data.stats.gov.cn/english/easyquery.htm?cn=C01
  • Wei, B., Xie, N., & Hu, A. (2018). Optimal solution for novel grey polynomial prediction model. Applied Mathematical Modelling, 62, 717–727. https://doi.org/10.1016/j.apm.2018.06.035
  • Wu, L., Liu, S., Yao, L., & Yan, S. (2013). The effect of sample size on the grey system model. Applied Mathematical Modelling, 37(9), 6577–6583. https://doi.org/10.1016/j.apm.2013.01.018
  • Wu, L., Liu, S., Yao, L., Yan, S., & Liu, D. (2013). Grey system model with the fractional order accumulation. Communications in Nonlinear Science and Numerical Simulation, 18(7), 1775–1785. https://doi.org/10.1016/j.cnsns.2012.11.017
  • Wu, W.-Z. et al. (2022). A time power-based grey model with conformable fractional derivative and its applications. Chaos, Solitons & Fractals, 155, 111657. https://doi.org/10.1016/j.chaos.2021.111657
  • Wu, W. et al. (2022). A Conformable Fractional Discrete Grey Model CFDGM (1,1) and its Application. International Journal of Grey Systems, 2(1), 5–15. https://doi.org/10.52812/ijgs.36
  • Wu, W., Ma, X., Zhang, Y., Li, W., & Wang, Y. (2020). A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Science of the Total Environment, 707, 135447. https://doi.org/10.1016/j.scitotenv.2019.135447
  • Xie, W., Liu, C., Wu, W.-Z., Li, W., & Liu, C. (2020). Continuous grey model with conformable fractional derivative. Chaos, Solitons & Fractals, 139, 110285. https://doi.org/10.1016/j.chaos.2020.110285
  • Yuxiao, K., Shuhua, M., & Yonghong, Z. (2021). Variable order fractional grey model and its application. Applied Mathematical Modelling, 97, 619–635. https://doi.org/10.1016/j.apm.2021.03.059
  • Yuxiao, K., Shuhua, M., Yonghong, Z., & Huimin, Z. (2020). Fractional derivative multivariable grey model for nonstationary sequence and its application. Journal of Systems Engineering and Electronics, 31(5), 1009–1018. https://doi.org/10.23919/jsee.2020.000075
  • Özcan, T. (2017). Application of Seasonal and Multivariable Grey Prediction Models for Short-Term Load Forecasting. Alphanumeric Journal. https://doi.org/10.17093/alphanumeric.359942
  • Öztürk, Z., Bilgil, H., & Erdinç, Ü. (2022). An optimized continuous fractional grey model for forecasting of the time dependent real world cases. Hacettepe Journal of Mathematics and Statistics, 51(1), 308–326. https://doi.org/10.15672/hujms.939543
There are 23 citations in total.

Details

Primary Language English
Subjects Econometric and Statistical Methods
Journal Section Articles
Authors

Halis Bilgil 0000-0002-8329-5806

Ümmügülsüm Erdinç 0000-0002-4504-3675

Publication Date December 31, 2024
Submission Date March 5, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2024 Volume: 12 Issue: 3

Cite

APA Bilgil, H., & Erdinç, Ü. (2024). China Total Energy Consumption Forecast with Optimized Continuous Conformable Fractional Grey Model. Alphanumeric Journal, 12(3), 157-168. https://doi.org/10.17093/alphanumeric.1447211

Alphanumeric Journal is hosted on DergiPark, a web based online submission and peer review system powered by TUBİTAK ULAKBIM.

Alphanumeric Journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License