Research Article
BibTex RIS Cite

Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi

Year 2021, Volume: 31 Issue: 2, 265 - 273, 15.12.2021
https://doi.org/10.18615/anadolu.1034143

Abstract

Bitki büyüme ve gelişmesini iyileştiren, biyotik ve abiyotik stres koşullarında bitkilerin toleransını arttıran silisyum (Si), yüksek bitkilerin birçoğunda ve çilekte bulunmaktadır. Çilek, bir Si-akümülatör türüdür, ancak çilekte Si'nin işlevi yeterince bilinmemektedir. Bu çalışma farklı dozlardaki silika jel (SiJ) uygulamasının, örtü altında yetiştirilen Albion ve Rubygem çilek çeşitlerinin vejetatif gelişimi, bitki verimi ve meyve kalitesi üzerine olan etkilerinin belirlenmesi amacıyla yürütülmüştür. Çalışma kapsamında farklı dozlardaki (0; 2,5; 5; 10 mg l-1) SiJ uygulaması 20 gün arayla toplamda 4 kez bitki yüzeyini kaplayacak şekilde pülverizasyon yöntemiyle bitkilere uygulanmıştır. Deneme süresinde uygulamaların vejetatif büyüme üzerine olan etkinliğini tayin edebilmek amacıyla bitkilerde boy, çap ve yaprak sayısı ve klorofil indeksi ölçümleri 10 gün ara ile yapılmıştır. Bitki başına verim, meyve ağırlığı, meyve eni ve boyu her hasat sonrası belirlenerek kaydedilmiştir. Ayrıca her 10 günde bir olmak üzere meyvelerin SÇKM, pH ve titre edilebilir asit (TA) içerikleri analiz edilmiştir. Çalışma sonunda elde edilen veriler değerlendirildiğinde, SiJ uygulamasının, her iki çeşitte de gövde boyu, gövde çapı, yaprak sayısı, meyve eni, SÇKM içeriği, meyve eti sertliği ve klorofil indeksi ortalama değerlerini arttırdığı belirlenmiştir. Aynı zamanda SiJ uygulaması bitki başına verim, meyve ağırlığı ve meyve eni bakımından Albion çeşidinde etkili bulunmuş ve ortalama değerleri arttırmıştır.

References

  • Agarie, S., H., Uchida, W. Agata, F. Kubota, and P. B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production Science, 1(2): 89-95.
  • Ahmad, P., A. A. Abdel Latef, A. Hashem, E. F. Abd_Allah, S. Gucel, and L. S. P. Tran. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 7(347): 1-11.
  • Al-aghabary, K., Z. Zhu, and Q. Shi. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of plant nutrition, 27(12): 2101-2115.
  • Amin, M., R., A. Ahmad Ali, I. Hussain, R. Mahmood, M. Aslam, and D. J. Lee. 2018. Influence of silicon fertilization on maize performance under limited water supply. Silicon, 10(2): 177-183. Anonim. 2020. http://www.tuik.gov.tr/PreTablo.do?alt_id= 1001(Ziyaret Tarihi 10.11.2020).
  • Anonymous. 2017. SPSS®. Copyright © 2017, https://www. ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss IBM, NY, USA.
  • Anonymous. 2021. Food and Agriculture Organization of United Nations (FAO) Data http://www.fao.org/ faostat/en/#data/TP (Ziyaret tarihi 15.02.2021).
  • Artyszak, A. 2018. Effect of silicon fertilization on crop yield quantity and quality A literature review in Europe. Plants, 7(3): 54.
  • Ashraf, M. A., A. Akbar, A. Parveen, R. Rasheed, I. Hussain, and M. Iqbal. 2018. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry, 123, 268-280.
  • Cheng, B. T. 1982. Some significant functions of silicon to higher plants. Journal of Plant Nutrition, 5(12): 1345-1353.
  • Ciecierski, W. 2016, June. Effect of silicon on biotic and abiotic stress mitigation in horticultural and field crops. In Proceedings of the International Symposium “Mikroelementy w rolnictwie i srodowisku”, Kudowa-Zdrój, Poland (pp. 21-24).
  • Crusciol, C. A., A. L. Pulz, L. B. Lemos, R. P. Soratto, and G. P. Lima. 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop science, 49(3): 949-954.
  • Dehghanipoodeh, S., C. Ghobadi, B. Baninasab, M. Gheysari, and S. Shiranibidabadi. 2018. Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4(6): 226-232.
  • Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1): 641-664.
  • Feng, J., Q. Shi, X. Wang, M. Wei, F. Yang, and H. Xu. 2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123(4): 521-530.
  • Galli, V., R. da Silva Messias, E. C. Perin, J. M. Borowski, A. L. Bamberg, and C. V. Rombaldi. 2016. Mild salt stress improves strawberry fruit quality. LWT, 73, 693-699.
  • Giampieri, F., J. M. Alvarez-Suarez, and M. Battino. 2014. Strawberry and human health: Effects beyond antioxidant activity. Journal of agricultural and food chemistry, 62(18): 3867-3876.
  • Giampieri, F., S. Tulipani, J. M. Alvarez-Suarez, J. L. Quiles, B. Mezzetti, and M. Battino. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1): 9-19.
  • Grajkowski, J., I. Ochmian, and J. Popiel. 2006. The effect of the foliar application of lime and silicon fertilizers on the quality of'Elsanta'strawberries. Folia Univ. Agric. Stetin., Agric, 248(101): 103-108.
  • Gunes, A., A. Inal, E. G. Bagci, and S. Coban. 2007. Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. Journal of Plant Physiology, 164(6): 807-811.
  • Gunes, A., D. J. Pilbeam, A. Inal, and S. Coban. 2008. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis, 39(13-14): 1885-1903.
  • Hajiboland, R., N. Moradtalab, Z. Eshaghi, and J. Feizy. 2018. Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. New Zealand journal of crop and horticultural science, 46(2): 144-161.
  • Hanafy Ahmed, A. H., E. M. Harb, M. A. Higazy, and S. H. Morgan. 2008. Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research, 3(1): 1-26.
  • Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxová, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4): 459-466.
  • Kamenidou, S., T. J. Cavins, and S. Marek. 2010. Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123(3): 390-394.
  • Karimi, J., and S. Mohsenzadeh. 2016. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of plant physiology, 63(1): 119-123.
  • Korndörfer, G. H., A. A. Vidal, and P. H. Korndörfer. 2010. Elemento benéfico: silício na nutrição de plantas. Manejo da fertilidade do solo e nutrição de plantas. Jaboticabal: FCAV, 309-327.
  • Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems, 80(3): 333-340.
  • Liu, C., H. Zheng, K. Sheng, W. Liu, and L. Zheng. 2018. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139: 47-55.
  • Ma, J. F., and N. Yamaji. 2008. Functions and transport of silicon in plants. Cellular and molecular life sciences, 65(19): 3049-3057.
  • Ma, J. F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. Studies in plant Science, 8: 17-39.
  • Manivannan, A., P. Soundararajan, S. Muneer, C. H. Ko, and B. R. Jeong. 2016. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International.
  • Mauad, M., C. A. C. Crusciol, H. Grassi Filho, and J. C. Corrêa. 2003. Nitrogen and silicon fertilization of upland rice. Scientia Agricola, 60(4): 761-765.
  • Mikiciuk, G., M. Mikiciuk, and J. Popiel. 2009. Wpływ nawożenia potasowo-krzemowego na jakość owoców truskawki (Fragaria ananassa DUCH.) odmiany Senga Sengana. Zeszyty Problemowe Postępów Nauk Rolniczych, (538): 163-168.
  • Miyake, Y., and E. Takahashi. 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil science and plant nutrition, 32(2): 321-326.
  • Moore, J. N., and J. Janick, (Eds.). 1996. Fruit Breeding: Tree and tropical fruits; 2. Vine and small fruits; 3. Nuts. John Wiley and Sons.
  • Mozafari, A. A., N. Ghaderi, F. Havas, and S. Dedejani. 2019. Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria× ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256: 108601.
  • Peris-Felipo, F. J., Y. Benavent-Gil, and L. Hernández-Apaolaza. 2020. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiology and Biochemistry, 152: 23-31.
  • Reis, T. H. P., P. T. G. Guimarães, F. C. Figueiredo, A. A. A. Pozza, F. D. Nogueira, and C. R. Rodrigues. 2007. O silício na nutrição e defesa de plantas. Belo Horizonte: EPAMIG.
  • Rosmarkam, A., and N. W., Yuwono, 2002. Soil fertility science. Kanisius. Yogyakarta, Indonesia. Pp 86-88
  • Seleiman, M. F., Y. Refay, N. Al-Suhaibani, I. Al-Ashkar, S. El-Hendawy, and E. M. Hafez. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy, 9(10): 637.
  • Seyedlar, F. L., S. J. Tabatabaei, and E. Falahi. 2009. The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticulture Science (Agricultural Sciences and Technology) 23(1): 88-95.
  • Sun, Y., G. Niu, R. Wallace, J. Masabni, and M. Gu. 2015. Relative salt tolerance of seven strawberry cultivars. Horticulturae, 1(1): 27-43.
  • Tari, I., G. Laskay, Z. Takács, and P. Poór. 2013. Response of sorghum to abiotic stresses: a review. Journal of Agronomy and Crop Science, 199(4): 264-274.
  • Tripathi, D. K., S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110: 70-81.
  • Tubana, B. S., T. Babu, and L. E. Datnoff. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science, 181(9/10): 393-411.
  • Wang, S. Y. and, G. J. Galletta. 1998. Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition, 21(1): 157-167.
  • White, B., B. S. Tubana, T. Babu, H. Mascagni, F. Agostinho, L. E, Datnoff, and S. Harrison. 2017. Effect of silicate slag application on wheat grown under two nitrogen rates. Plants, 6(4): 47.
  • Yu, Y., A. Wang, X. Li, M. Kou, W. Wang, X. Chen,... J. Sun. 2018. Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Frontiers in plant science, 9: 256.
  • Zydlik, Z., E. Pacholak, and K. Rutkowski. 2009. Effect of Actisil preparation on the growth of strawberries grown in the soil depleted by a long monoculture. Zeszyty Problemowe Postępów Nauk Rolniczych, 536: 259-265.

The Effect of Silica Gel Application on Plant Growth, Yield and Fruit Quality in Greenhouse Strawberry Production

Year 2021, Volume: 31 Issue: 2, 265 - 273, 15.12.2021
https://doi.org/10.18615/anadolu.1034143

Abstract

: Silicon (Si), which improves plant growth and development, increases the tolerance of plants under biotic and abiotic stress conditions, is found in many higher plants and strawberry. Strawberry has been identified as a Si accumulator species however the function of Si in this species is obscure. This study was conducted to determine the effects of different doses of silica gel (SiJ) application on vegetative growth, plant yield and fruit quality of Albion and Rubygem strawberry cultivars in greenhouse conditions. Within the scope of the study, different doses of SiJ (0; 2.5; 5; 10 mg L-1) were applied to the plants as a foliar spray at 20 days intervals and 4 times in total. During the experiment, in order to determine the efficiency of the applications on vegetative growth, shoot length and diameter, number of leaf and chlorophyll index were measured at 10 days intervals. Yield per plant, fruit weight, fruit width and length were determined and recorded after each harvest. In addition, total soluble solids, pH and titratable acidity (TA) contents of fruits were analyzed every 10 days. When the data were evaluated at the end of the study, it was determined that the SiJ application increased the mean values of shoot length, shoot diameter, leaf number, fruit diameter, total soluble solids, fruit firmness and chlorophyll index in both cultivars. In addition, it was determined that SiJ application increased yield per plant, fruit weight and fruit diameter in Albion variety.

References

  • Agarie, S., H., Uchida, W. Agata, F. Kubota, and P. B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production Science, 1(2): 89-95.
  • Ahmad, P., A. A. Abdel Latef, A. Hashem, E. F. Abd_Allah, S. Gucel, and L. S. P. Tran. 2016. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 7(347): 1-11.
  • Al-aghabary, K., Z. Zhu, and Q. Shi. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of plant nutrition, 27(12): 2101-2115.
  • Amin, M., R., A. Ahmad Ali, I. Hussain, R. Mahmood, M. Aslam, and D. J. Lee. 2018. Influence of silicon fertilization on maize performance under limited water supply. Silicon, 10(2): 177-183. Anonim. 2020. http://www.tuik.gov.tr/PreTablo.do?alt_id= 1001(Ziyaret Tarihi 10.11.2020).
  • Anonymous. 2017. SPSS®. Copyright © 2017, https://www. ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss IBM, NY, USA.
  • Anonymous. 2021. Food and Agriculture Organization of United Nations (FAO) Data http://www.fao.org/ faostat/en/#data/TP (Ziyaret tarihi 15.02.2021).
  • Artyszak, A. 2018. Effect of silicon fertilization on crop yield quantity and quality A literature review in Europe. Plants, 7(3): 54.
  • Ashraf, M. A., A. Akbar, A. Parveen, R. Rasheed, I. Hussain, and M. Iqbal. 2018. Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry, 123, 268-280.
  • Cheng, B. T. 1982. Some significant functions of silicon to higher plants. Journal of Plant Nutrition, 5(12): 1345-1353.
  • Ciecierski, W. 2016, June. Effect of silicon on biotic and abiotic stress mitigation in horticultural and field crops. In Proceedings of the International Symposium “Mikroelementy w rolnictwie i srodowisku”, Kudowa-Zdrój, Poland (pp. 21-24).
  • Crusciol, C. A., A. L. Pulz, L. B. Lemos, R. P. Soratto, and G. P. Lima. 2009. Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop science, 49(3): 949-954.
  • Dehghanipoodeh, S., C. Ghobadi, B. Baninasab, M. Gheysari, and S. Shiranibidabadi. 2018. Effect of silicon on growth and development of strawberry under water deficit conditions. Horticultural Plant Journal, 4(6): 226-232.
  • Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50(1): 641-664.
  • Feng, J., Q. Shi, X. Wang, M. Wei, F. Yang, and H. Xu. 2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123(4): 521-530.
  • Galli, V., R. da Silva Messias, E. C. Perin, J. M. Borowski, A. L. Bamberg, and C. V. Rombaldi. 2016. Mild salt stress improves strawberry fruit quality. LWT, 73, 693-699.
  • Giampieri, F., J. M. Alvarez-Suarez, and M. Battino. 2014. Strawberry and human health: Effects beyond antioxidant activity. Journal of agricultural and food chemistry, 62(18): 3867-3876.
  • Giampieri, F., S. Tulipani, J. M. Alvarez-Suarez, J. L. Quiles, B. Mezzetti, and M. Battino. 2012. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28(1): 9-19.
  • Grajkowski, J., I. Ochmian, and J. Popiel. 2006. The effect of the foliar application of lime and silicon fertilizers on the quality of'Elsanta'strawberries. Folia Univ. Agric. Stetin., Agric, 248(101): 103-108.
  • Gunes, A., A. Inal, E. G. Bagci, and S. Coban. 2007. Silicon-mediated changes on some physiological and enzymatic parameters symptomatic of oxidative stress in barley grown in sodic-B toxic soil. Journal of Plant Physiology, 164(6): 807-811.
  • Gunes, A., D. J. Pilbeam, A. Inal, and S. Coban. 2008. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant mechanisms, and lipid peroxidation. Communications in Soil Science and Plant Analysis, 39(13-14): 1885-1903.
  • Hajiboland, R., N. Moradtalab, Z. Eshaghi, and J. Feizy. 2018. Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. New Zealand journal of crop and horticultural science, 46(2): 144-161.
  • Hanafy Ahmed, A. H., E. M. Harb, M. A. Higazy, and S. H. Morgan. 2008. Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research, 3(1): 1-26.
  • Hattori, T., S. Inanaga, H. Araki, P. An, S. Morita, M. Luxová, and A. Lux. 2005. Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123(4): 459-466.
  • Kamenidou, S., T. J. Cavins, and S. Marek. 2010. Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123(3): 390-394.
  • Karimi, J., and S. Mohsenzadeh. 2016. Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russian Journal of plant physiology, 63(1): 119-123.
  • Korndörfer, G. H., A. A. Vidal, and P. H. Korndörfer. 2010. Elemento benéfico: silício na nutrição de plantas. Manejo da fertilidade do solo e nutrição de plantas. Jaboticabal: FCAV, 309-327.
  • Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry systems, 80(3): 333-340.
  • Liu, C., H. Zheng, K. Sheng, W. Liu, and L. Zheng. 2018. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139: 47-55.
  • Ma, J. F., and N. Yamaji. 2008. Functions and transport of silicon in plants. Cellular and molecular life sciences, 65(19): 3049-3057.
  • Ma, J. F., Y. Miyake, and E. Takahashi. 2001. Silicon as a beneficial element for crop plants. Studies in plant Science, 8: 17-39.
  • Manivannan, A., P. Soundararajan, S. Muneer, C. H. Ko, and B. R. Jeong. 2016. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International.
  • Mauad, M., C. A. C. Crusciol, H. Grassi Filho, and J. C. Corrêa. 2003. Nitrogen and silicon fertilization of upland rice. Scientia Agricola, 60(4): 761-765.
  • Mikiciuk, G., M. Mikiciuk, and J. Popiel. 2009. Wpływ nawożenia potasowo-krzemowego na jakość owoców truskawki (Fragaria ananassa DUCH.) odmiany Senga Sengana. Zeszyty Problemowe Postępów Nauk Rolniczych, (538): 163-168.
  • Miyake, Y., and E. Takahashi. 1986. Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Soil science and plant nutrition, 32(2): 321-326.
  • Moore, J. N., and J. Janick, (Eds.). 1996. Fruit Breeding: Tree and tropical fruits; 2. Vine and small fruits; 3. Nuts. John Wiley and Sons.
  • Mozafari, A. A., N. Ghaderi, F. Havas, and S. Dedejani. 2019. Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria× ananassa Duch.) under drought and salinity stresses: A study based on in vitro culture. Scientia Horticulturae, 256: 108601.
  • Peris-Felipo, F. J., Y. Benavent-Gil, and L. Hernández-Apaolaza. 2020. Silicon beneficial effects on yield, fruit quality and shelf-life of strawberries grown in different culture substrates under different iron status. Plant Physiology and Biochemistry, 152: 23-31.
  • Reis, T. H. P., P. T. G. Guimarães, F. C. Figueiredo, A. A. A. Pozza, F. D. Nogueira, and C. R. Rodrigues. 2007. O silício na nutrição e defesa de plantas. Belo Horizonte: EPAMIG.
  • Rosmarkam, A., and N. W., Yuwono, 2002. Soil fertility science. Kanisius. Yogyakarta, Indonesia. Pp 86-88
  • Seleiman, M. F., Y. Refay, N. Al-Suhaibani, I. Al-Ashkar, S. El-Hendawy, and E. M. Hafez. 2019. Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy, 9(10): 637.
  • Seyedlar, F. L., S. J. Tabatabaei, and E. Falahi. 2009. The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticulture Science (Agricultural Sciences and Technology) 23(1): 88-95.
  • Sun, Y., G. Niu, R. Wallace, J. Masabni, and M. Gu. 2015. Relative salt tolerance of seven strawberry cultivars. Horticulturae, 1(1): 27-43.
  • Tari, I., G. Laskay, Z. Takács, and P. Poór. 2013. Response of sorghum to abiotic stresses: a review. Journal of Agronomy and Crop Science, 199(4): 264-274.
  • Tripathi, D. K., S. Singh, V. P. Singh, S. M. Prasad, N. K. Dubey, and D. K. Chauhan. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110: 70-81.
  • Tubana, B. S., T. Babu, and L. E. Datnoff. 2016. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Science, 181(9/10): 393-411.
  • Wang, S. Y. and, G. J. Galletta. 1998. Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition, 21(1): 157-167.
  • White, B., B. S. Tubana, T. Babu, H. Mascagni, F. Agostinho, L. E, Datnoff, and S. Harrison. 2017. Effect of silicate slag application on wheat grown under two nitrogen rates. Plants, 6(4): 47.
  • Yu, Y., A. Wang, X. Li, M. Kou, W. Wang, X. Chen,... J. Sun. 2018. Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+–ATPase activity and K+/Na+ homeostasis in sweet potato. Frontiers in plant science, 9: 256.
  • Zydlik, Z., E. Pacholak, and K. Rutkowski. 2009. Effect of Actisil preparation on the growth of strawberries grown in the soil depleted by a long monoculture. Zeszyty Problemowe Postępów Nauk Rolniczych, 536: 259-265.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Makaleler
Authors

Sevinç Şener This is me 0000-0001-5335-9250

Canan Nilay Dura This is me 0000-0002-7552-2968

Zehra Kurt This is me 0000-0003-4651-9919

Publication Date December 15, 2021
Submission Date March 25, 2021
Published in Issue Year 2021 Volume: 31 Issue: 2

Cite

APA Şener, S., Dura, C. N., & Kurt, Z. (2021). Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 31(2), 265-273. https://doi.org/10.18615/anadolu.1034143
AMA Şener S, Dura CN, Kurt Z. Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi. ANADOLU. December 2021;31(2):265-273. doi:10.18615/anadolu.1034143
Chicago Şener, Sevinç, Canan Nilay Dura, and Zehra Kurt. “Örtü Altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi Ve Meyve Kalitesi Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31, no. 2 (December 2021): 265-73. https://doi.org/10.18615/anadolu.1034143.
EndNote Şener S, Dura CN, Kurt Z (December 1, 2021) Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31 2 265–273.
IEEE S. Şener, C. N. Dura, and Z. Kurt, “Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi”, ANADOLU, vol. 31, no. 2, pp. 265–273, 2021, doi: 10.18615/anadolu.1034143.
ISNAD Şener, Sevinç et al. “Örtü Altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi Ve Meyve Kalitesi Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 31/2 (December 2021), 265-273. https://doi.org/10.18615/anadolu.1034143.
JAMA Şener S, Dura CN, Kurt Z. Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi. ANADOLU. 2021;31:265–273.
MLA Şener, Sevinç et al. “Örtü Altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi Ve Meyve Kalitesi Üzerindeki Etkisi”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, vol. 31, no. 2, 2021, pp. 265-73, doi:10.18615/anadolu.1034143.
Vancouver Şener S, Dura CN, Kurt Z. Örtü altı Çilek Yetiştiriciliğinde Silika Jel Uygulamasının Bitki Gelişimi, Verimi ve Meyve Kalitesi Üzerindeki Etkisi. ANADOLU. 2021;31(2):265-73.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016