Research Article
BibTex RIS Cite
Year 2023, , 287 - 297, 31.01.2023
https://doi.org/10.15832/ankutbd.930238

Abstract

References

  • Abdallah D, Baraket G, Perez V, Mustapha S B, Salhi-Hannachi A & Hormaza J I (2019). Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Frontiers in Plant Science 10:896. https://dx.doi.org/10.3389/fpls.2019.00896
  • Brancher T L, Hawerroth M C, Kvitschal M V, Manenti D C & Guidolin A F (2020). Self-incompatibility alleles in important genotypes for apple breeding in Brazil. Crop Breeding and Applied Biotechnology 20 (4):e28652041. https://doi.org/10.1590/1984-70332020v20n4a54
  • Broothaerts W & Van Nerum I (2003). Apple self-incompatibility genotypes: an overview. In XXVI International Horticultural Congress: Genetics and Breeding of Tree Fruits and Nuts 379-387, Canada.
  • Broothaerts W, Janssens G A, Proost P & Broekaert W F (1995). Cdna cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Molecular Biology 27 (3): 499-511. https://doi.org/10.1007/bf00019317
  • Broothaerts W, Neram I V & Keulemans J (2004). Update on and Review of the Incompatibility (S-) Genotypes of Apple Cultivars. HortScience: a publication of the American Society for Horticultural Science 39(5):943-947. https://doi.org/10.21273/hortsci.39.5.943
  • Broothaerts, W, Verdoodt, L, Keulemans, J, Janssens, G A & Broekaert, W F (1996). The self-incompatibility gene in apple and determination of the S-genotype of apple cultivars by PCR. Acta Horticulturae 423:103-109. https://doi.org/10.17660/ActaHortic.1996.423.13
  • Burak M, Ergül A, Kazan K, Akçay M E, Yüksel C, Bakir M & Ayanoğlu H (2014). Genetic analysis of Anatolian apples (Malus sp.) by simple sequence repeats. Journal of Systematics and Evolution 52(5):580-588. https://doi.org/10.1111/jse.12099
  • De Franceschi P, Bianco L, Cestaro A, Dondini L & Velasco R (2018). Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars. Plant Molecular Biology 97:279-296. https://doi.org/10.1007/s11103-018-0741-x
  • De Franceschi P, Cova V, Tartarini S & Dondini L (2016). Characterization of a new apple S-RNase allele and its linkage with the Rvi5 gene for scab resistance. Molecular Breeding 36:1-11. https://doi.org/10.1007/s11032-015-0427-x
  • De Franceschi P, Dondini L & Sanzol J (2012) Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). Journal of Experimental Botany 63(11): 4015-4032. https://doi.org/10.1093/jxb/ers108
  • De Nettancourt D (2001). Incompatibility and Incongruity in Wild and Cultivated Plants. Berlin/Heidelberg/New York: Springer-Verlag. 322 pp. 2nd ed.
  • Dreesen R S G, Vanholme B TM, Luyten K, Van Wynsberghe L, Fazio G, Roldán-Ruiz I & Keulemans J (2010). Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Molecular Breeding 26: 693-709. https://doi.org/10.1007/s11032-010-9405-5
  • Franklin-Tong & Franklin F C H (2003). Gametophytic self incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Science 8: 598-605. https://doi.org/10.1016/j.tplants.2003.10.008
  • Halász J, Hegedűs A, György Z, Pállinger É & Tóth M (2011). S-genotyping of old apple cultivars from the Carpathian basin: methodological, breeding and evolutionary aspects. Tree Genetics & Genomes 7:1135-1145. https://doi.org/10.1007/s11295-011-0401-7
  • Hegedűs A (2006). Review of the self-incompatibility in apple (Malus×domestica Borkh., syn.:Malus pumila Mill.). International Journal of Horticultural Science 12:31-36. https://doi.org/10.31421/ijhs/12/2/632
  • Ishimizu T, Shinkawa T, Sakiyama F & Norioka S (1998). Primary structural features of rosaceous S-rnases associated with gametophytic self-incompatibility. Plant Molecular Biology 37 (6): 931-941. https://doi.org/10.1023/a:1006078500664
  • Ishimizu, T, Inoue, K, Shimonaka, M, Saito, T, Terai, O & Norioka, S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theoretical and Applied Genetics 98: 961-967.
  • Janssens G A, Goderis I J, Broekaert W F & Broothaerts W (1995). A molecular method for S-allele identification in apple based on allele-specific PCR. Theoretical and Applied Genetics 91(4):691-698. https://doi.org/10.1007/bf00223298
  • Kasajima I, Kikuchi T & Yoshikawa N (2017). Rapid identification of apple (Malus×domestica Borkh.) S-alleles using sequencing-based DNA marker APPLid. Plant Biotechnology 34: 97-106. doi:10.5511/plantbiotechnology.17.0503a
  • Larsen B, Orgaard M, Toldam-Andersen T B & Pedersen C (2016). A high-throughput method for genotyping S-RNase alleles in apple. Molecular Breeding 36:24. doi:10.1007/s11032-016-0448-0
  • Lefort F, Lally M, Thompson D & Douglas G C (1998). Morphological traits, microsatellite finger printing and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genetica 47(5): 257-261.
  • Li M, Zhu K, Bai S, Liu Z & Li T (2011). Isolation and S-genotyping application of S-allelic polymorphic MdSLFBs in apple (Malus domestica Borkh.). Molecular Breeding 28:171-180. https://doi.org/10.1007/s11032-010-9471-8
  • Ma Q, Chen C, Zeng Z, Zou Z, Li H, Zhou Q, Chen X, Sun K & Li X (2018). Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics 19:289. https://doi.org/10.1186/s12864-018-4674-1
  • Matsumoto S , Tianzhong L, Otagaki S , Yang L & Songling B (2018). Efficient breeding and cultivation of type2 Red-fleshed apple cultivars using a search system for suitable apple cultivar combination. Horticultural Plant Journal 4(6): 219-225. https://doi.org/10.1016/j.hpj.2018.06.002
  • Matsumoto S & Kitahara K (2000). Discovery of a new self-incompatibility allele in apple. Hortscience 35(7): 1329-1332. https://doi.org/10.21273/hortsci.35.7.1329
  • Matsumoto S, Eguchi T,Bessho H & Abe K (2007). Determination and confirmation of S-RNase genotypes of apple pollinators and cultivars. Journal of Horticultural Science and Biotechnology 82:323-329. https://doi.org/10.1080/14620316.2007.11512236
  • Meng D, Gu Z, Wang A, Yuan H, Li W, Yang Q & Li T (2014). Screening and characterization of apple Rho-like gtpase (mdrops) genes related to S-rnase mediated self-incompatibility. Plant Cell, Tissue and Organ Culture (PCTOC) 117 (3): 465-476. https://doi.org/10.1007/s11240-014-0457-9
  • Mir J I, Ahmed N, Singh D B, Sheemar G, Hamid A, Zaffer S & Shafi V (2016). Molecular identification of S-alleles associated with self-incompatibility in apple (Malus spp.) genotypes. Indian Journal of Agricultural Sciences 86 (1):78-81.
  • Nour V, Trandafir I & Ionica M E (2010). Compositional characteristics of fruits of several apples (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:228-233. https://doi.org/10.15835/nbha.43.2.10081
  • Sakurai K, Brown SK & Weeden N (2000). Self-incompatibility alleles of apple cultivars and advanced selections. Hortscience 35(1):116-119. https://doi.org/10.21273/hortsci.35.1.116
  • Sakurai K, Brown SK & Weeden, NF (1997). Determining the self-incompatibility alleles of Japanese apple cultivars. Hortscience 32(7):1258-1259. https://doi.org/10.21273/hortsci.32.7.1258
  • Sassa H (2016). Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breeding Science 66:116-121. https://doi.org/10.1270/jsbbs.66.116
  • Sassa H, Mase N, Hirano H & Ikehashi H (1994). Identification of self-incompatibility-related glycoproteins in styles of apple (Malus x domestica). Theoretical and Applied Genetics 89(2): 201-205. https://doi.org/10.1007/bf00225142
  • Shaheen F A, Khan K A, Husain M, Mahmood R & Rafique M K (2017). Role Of Honey bees (Apis mellifera L.) Foraging activities in increased fruit setting and production Of Apples (Malus domestica). Pakistan Journal of Agricultural Research 30 (1).
  • Shulaev V, Korban SS, Sosinski B, Abbott A G & Aldwinckle H S (2008). Multiple models for Rosaceae genomics. Plant Physiology 47(3):985-1003. https://doi.org/10.1104/pp.107.115618
  • Silva N F & Goring D R (2001). Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences 58(14):1988-2007. https://doi.org/10.1007/pl00000832
  • Van Nerum I, Geerts M, Van Haute A, Keulemans J & Broothaerts W (2001). Re-examination of the self-incompatibility genotype of apple cultivars containing putative ‘new’ S-alleles. Theoretical and Applied Genetics 103(4):584-591. https://doi.org/10.1007/pl00002913
  • Verdoodt L, Van Haute A, Goderis I J, De Witte K, Keulemans J & Broothaerts W (1998). Use of the multi-allelic self-incompatibility gene in apple to assess homozygocity in shoots obtained through haploid induction. Theoretical and Applied Genetics 96 (2): 294-300. https://doi.org/10.1007/s001220050739
  • Whitehouse H L K (1951). Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. Annals Botany New Series 14:198-216. https://doi.org/10.1093/oxfordjournals.aob.a083243

Identification of Self Incompatibility (S) Alleles in Turkish Apple Gene Sources using Allele-specific PCR

Year 2023, , 287 - 297, 31.01.2023
https://doi.org/10.15832/ankutbd.930238

Abstract

Self-incompatibility (SI) is a genetic mechanism in many flowering plants by which generative reproduction is prevented. The self-incompatibility caused by the genetic functions of the cell is controlled by genes called S genes or self-incompatibility genes. Self-incompatibility results in decreased pollination and ultimately yield loss. In apple (Malus domestica L.), self-incompatibility is controlled by multi-allelic S-locus. Approaches in the S-glycoprotein profiles and allele-specific PCR methods using the gene profiles and S-glycoprotein profiles for determination of the incompatibility levels are of great importance. In current study, the self-incompatibility status of 192 apple genotypes (such as, Amasya, Hüryemez, Şah elması, Tokat, Demir elması etc.) obtained from the National Collection of Atatürk Horticultural Central Research Institute, Yalova, Turkey, has been determined. For this purpose, genotype-specific allele status and compatibility levels were screened via PCR (Polymerase Chain Reaction) using 4 different S-alleles (Sd, Sf, S26 and S9). 181 genotypes containing at least 1 S-allele were identified as ‘Partially Incompatible’ and 12 genotypes involving 4 S-alleles were assigned ‘Totally Incompatible’. No S-alleles were observed in 2 genotypes (Pancarlık and Hüryemez) which exhibited ‘Compatibility’ status.

References

  • Abdallah D, Baraket G, Perez V, Mustapha S B, Salhi-Hannachi A & Hormaza J I (2019). Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Frontiers in Plant Science 10:896. https://dx.doi.org/10.3389/fpls.2019.00896
  • Brancher T L, Hawerroth M C, Kvitschal M V, Manenti D C & Guidolin A F (2020). Self-incompatibility alleles in important genotypes for apple breeding in Brazil. Crop Breeding and Applied Biotechnology 20 (4):e28652041. https://doi.org/10.1590/1984-70332020v20n4a54
  • Broothaerts W & Van Nerum I (2003). Apple self-incompatibility genotypes: an overview. In XXVI International Horticultural Congress: Genetics and Breeding of Tree Fruits and Nuts 379-387, Canada.
  • Broothaerts W, Janssens G A, Proost P & Broekaert W F (1995). Cdna cloning and molecular analysis of two self-incompatibility alleles from apple. Plant Molecular Biology 27 (3): 499-511. https://doi.org/10.1007/bf00019317
  • Broothaerts W, Neram I V & Keulemans J (2004). Update on and Review of the Incompatibility (S-) Genotypes of Apple Cultivars. HortScience: a publication of the American Society for Horticultural Science 39(5):943-947. https://doi.org/10.21273/hortsci.39.5.943
  • Broothaerts, W, Verdoodt, L, Keulemans, J, Janssens, G A & Broekaert, W F (1996). The self-incompatibility gene in apple and determination of the S-genotype of apple cultivars by PCR. Acta Horticulturae 423:103-109. https://doi.org/10.17660/ActaHortic.1996.423.13
  • Burak M, Ergül A, Kazan K, Akçay M E, Yüksel C, Bakir M & Ayanoğlu H (2014). Genetic analysis of Anatolian apples (Malus sp.) by simple sequence repeats. Journal of Systematics and Evolution 52(5):580-588. https://doi.org/10.1111/jse.12099
  • De Franceschi P, Bianco L, Cestaro A, Dondini L & Velasco R (2018). Characterization of 25 full-length S-RNase alleles, including flanking regions, from a pool of resequenced apple cultivars. Plant Molecular Biology 97:279-296. https://doi.org/10.1007/s11103-018-0741-x
  • De Franceschi P, Cova V, Tartarini S & Dondini L (2016). Characterization of a new apple S-RNase allele and its linkage with the Rvi5 gene for scab resistance. Molecular Breeding 36:1-11. https://doi.org/10.1007/s11032-015-0427-x
  • De Franceschi P, Dondini L & Sanzol J (2012) Molecular bases and evolutionary dynamics of self-incompatibility in the Pyrinae (Rosaceae). Journal of Experimental Botany 63(11): 4015-4032. https://doi.org/10.1093/jxb/ers108
  • De Nettancourt D (2001). Incompatibility and Incongruity in Wild and Cultivated Plants. Berlin/Heidelberg/New York: Springer-Verlag. 322 pp. 2nd ed.
  • Dreesen R S G, Vanholme B TM, Luyten K, Van Wynsberghe L, Fazio G, Roldán-Ruiz I & Keulemans J (2010). Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Molecular Breeding 26: 693-709. https://doi.org/10.1007/s11032-010-9405-5
  • Franklin-Tong & Franklin F C H (2003). Gametophytic self incompatibility inhibits pollen tube growth using different mechanisms. Trends Plant Science 8: 598-605. https://doi.org/10.1016/j.tplants.2003.10.008
  • Halász J, Hegedűs A, György Z, Pállinger É & Tóth M (2011). S-genotyping of old apple cultivars from the Carpathian basin: methodological, breeding and evolutionary aspects. Tree Genetics & Genomes 7:1135-1145. https://doi.org/10.1007/s11295-011-0401-7
  • Hegedűs A (2006). Review of the self-incompatibility in apple (Malus×domestica Borkh., syn.:Malus pumila Mill.). International Journal of Horticultural Science 12:31-36. https://doi.org/10.31421/ijhs/12/2/632
  • Ishimizu T, Shinkawa T, Sakiyama F & Norioka S (1998). Primary structural features of rosaceous S-rnases associated with gametophytic self-incompatibility. Plant Molecular Biology 37 (6): 931-941. https://doi.org/10.1023/a:1006078500664
  • Ishimizu, T, Inoue, K, Shimonaka, M, Saito, T, Terai, O & Norioka, S (1999) PCR-based method for identifying the S-genotypes of Japanese pear cultivars. Theoretical and Applied Genetics 98: 961-967.
  • Janssens G A, Goderis I J, Broekaert W F & Broothaerts W (1995). A molecular method for S-allele identification in apple based on allele-specific PCR. Theoretical and Applied Genetics 91(4):691-698. https://doi.org/10.1007/bf00223298
  • Kasajima I, Kikuchi T & Yoshikawa N (2017). Rapid identification of apple (Malus×domestica Borkh.) S-alleles using sequencing-based DNA marker APPLid. Plant Biotechnology 34: 97-106. doi:10.5511/plantbiotechnology.17.0503a
  • Larsen B, Orgaard M, Toldam-Andersen T B & Pedersen C (2016). A high-throughput method for genotyping S-RNase alleles in apple. Molecular Breeding 36:24. doi:10.1007/s11032-016-0448-0
  • Lefort F, Lally M, Thompson D & Douglas G C (1998). Morphological traits, microsatellite finger printing and genetic relatedness of a stand of elite oaks (Q. robur L.) at Tullynally, Ireland. Silvae Genetica 47(5): 257-261.
  • Li M, Zhu K, Bai S, Liu Z & Li T (2011). Isolation and S-genotyping application of S-allelic polymorphic MdSLFBs in apple (Malus domestica Borkh.). Molecular Breeding 28:171-180. https://doi.org/10.1007/s11032-010-9471-8
  • Ma Q, Chen C, Zeng Z, Zou Z, Li H, Zhou Q, Chen X, Sun K & Li X (2018). Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics 19:289. https://doi.org/10.1186/s12864-018-4674-1
  • Matsumoto S , Tianzhong L, Otagaki S , Yang L & Songling B (2018). Efficient breeding and cultivation of type2 Red-fleshed apple cultivars using a search system for suitable apple cultivar combination. Horticultural Plant Journal 4(6): 219-225. https://doi.org/10.1016/j.hpj.2018.06.002
  • Matsumoto S & Kitahara K (2000). Discovery of a new self-incompatibility allele in apple. Hortscience 35(7): 1329-1332. https://doi.org/10.21273/hortsci.35.7.1329
  • Matsumoto S, Eguchi T,Bessho H & Abe K (2007). Determination and confirmation of S-RNase genotypes of apple pollinators and cultivars. Journal of Horticultural Science and Biotechnology 82:323-329. https://doi.org/10.1080/14620316.2007.11512236
  • Meng D, Gu Z, Wang A, Yuan H, Li W, Yang Q & Li T (2014). Screening and characterization of apple Rho-like gtpase (mdrops) genes related to S-rnase mediated self-incompatibility. Plant Cell, Tissue and Organ Culture (PCTOC) 117 (3): 465-476. https://doi.org/10.1007/s11240-014-0457-9
  • Mir J I, Ahmed N, Singh D B, Sheemar G, Hamid A, Zaffer S & Shafi V (2016). Molecular identification of S-alleles associated with self-incompatibility in apple (Malus spp.) genotypes. Indian Journal of Agricultural Sciences 86 (1):78-81.
  • Nour V, Trandafir I & Ionica M E (2010). Compositional characteristics of fruits of several apples (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38:228-233. https://doi.org/10.15835/nbha.43.2.10081
  • Sakurai K, Brown SK & Weeden N (2000). Self-incompatibility alleles of apple cultivars and advanced selections. Hortscience 35(1):116-119. https://doi.org/10.21273/hortsci.35.1.116
  • Sakurai K, Brown SK & Weeden, NF (1997). Determining the self-incompatibility alleles of Japanese apple cultivars. Hortscience 32(7):1258-1259. https://doi.org/10.21273/hortsci.32.7.1258
  • Sassa H (2016). Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. Breeding Science 66:116-121. https://doi.org/10.1270/jsbbs.66.116
  • Sassa H, Mase N, Hirano H & Ikehashi H (1994). Identification of self-incompatibility-related glycoproteins in styles of apple (Malus x domestica). Theoretical and Applied Genetics 89(2): 201-205. https://doi.org/10.1007/bf00225142
  • Shaheen F A, Khan K A, Husain M, Mahmood R & Rafique M K (2017). Role Of Honey bees (Apis mellifera L.) Foraging activities in increased fruit setting and production Of Apples (Malus domestica). Pakistan Journal of Agricultural Research 30 (1).
  • Shulaev V, Korban SS, Sosinski B, Abbott A G & Aldwinckle H S (2008). Multiple models for Rosaceae genomics. Plant Physiology 47(3):985-1003. https://doi.org/10.1104/pp.107.115618
  • Silva N F & Goring D R (2001). Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences 58(14):1988-2007. https://doi.org/10.1007/pl00000832
  • Van Nerum I, Geerts M, Van Haute A, Keulemans J & Broothaerts W (2001). Re-examination of the self-incompatibility genotype of apple cultivars containing putative ‘new’ S-alleles. Theoretical and Applied Genetics 103(4):584-591. https://doi.org/10.1007/pl00002913
  • Verdoodt L, Van Haute A, Goderis I J, De Witte K, Keulemans J & Broothaerts W (1998). Use of the multi-allelic self-incompatibility gene in apple to assess homozygocity in shoots obtained through haploid induction. Theoretical and Applied Genetics 96 (2): 294-300. https://doi.org/10.1007/s001220050739
  • Whitehouse H L K (1951). Multiple-allelomorph incompatibility of pollen and style in the evolution of the angiosperms. Annals Botany New Series 14:198-216. https://doi.org/10.1093/oxfordjournals.aob.a083243
There are 39 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

Merve Dilek Karataş 0000-0002-1076-3648

Nahid Hazrati 0000-0002-8696-1480

Canan Yüksel Özmen 0000-0002-4421-1358

Mohammad Hasanzadeh 0000-0002-6379-4632

Serdar Altıntaş 0000-0001-6324-5265

Mehmet Emin Akçay 0000-0002-6992-782X

Ali Ergül 0000-0002-1205-268X

Publication Date January 31, 2023
Submission Date May 11, 2021
Acceptance Date May 7, 2022
Published in Issue Year 2023

Cite

APA Karataş, M. D., Hazrati, N., Yüksel Özmen, C., Hasanzadeh, M., et al. (2023). Identification of Self Incompatibility (S) Alleles in Turkish Apple Gene Sources using Allele-specific PCR. Journal of Agricultural Sciences, 29(1), 287-297. https://doi.org/10.15832/ankutbd.930238

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).