BibTex RIS Cite

The Finite Element Method at Design of the Greenhouse Floor Heating System: Mathematical Model and Simulation

Year 1999, Volume: 05 Issue: 01, 77 - 83, 01.01.1999

Abstract

in this study, the greenhouse floor heating system was modelled and simulated by the finite element method. The floor cross-section envisaged layers which were formed soil 30 cm , fine sand 6 cm , coarse sand 6 cm , perlite 6 cm and gravel 12 cm was devided to 100 triangular elements with 66 nodal points. The distance between heating lines in the floor heating system is 30 cm. The temperature changes being in connection with source heat of 3.5 W m-1, 4.0 W m-1 and 4.5 W m-1 were investigated under boundary conditions which were the air temperature of 15 °C and the convection transfer coefficent of 10 W m-2°C-1 on the soil surface. In these source fluxes, temperature values at heating point were determined as 28.10, 29.97 and 31.84°C, respectivelly. The temperature values at nodal points were calculated changing between 17.67 and 31.47 °C at conditions which were sol! moisture of 0.15 m3m-3 , soil thermal conductivity of 0.819 W m-1°C-1 and source heat fiux of 4 W m-1. The different conditions were analysed and presented using temperature contour lines. As a result, in practices of the greenhouse floor heating, the finite element method could be used as a powerful tool of design.

References

  • Anonymous, 1979. Soil Warming in Horticulture, Technical Information Sheet.
  • Day ı oğ lu, M, A. 1997. Tabandan Is ı tilmış Bı r Saks ı daki Sı cakl ı k Profilinin Sonlu Elemanlar Yöntemiyle Analizi. Tar ı msal Mekanizasyon 17. Ulusal Kongresi, s. 902-910, Tokat.
  • Fagan, M.J. 1992. Finite Element Analysis Theory and Pract ı ce. Longman Scientific & Technical, New York, s. 315.
  • Franca, A. S., Oliveira, L. S. Haghighi K. and Krutz G.W. 1995. The Application of Adaptive Finite Element Analysis to Haat and Mass Transfer Problems. Journal of Agricultural Engineering Research, 62:49-60.
  • Incropera, F. P. and DeWitt, D. P., 1996. Fundamentals of Haat and Mass Transfer. John Wiley & Sons,New York, p. 836.
  • Kakaç, S. 1982. Is ı Transferine Giri ş I: İ s ı lletimi., 0.D.T.O. Mühendislik Fakültesi Yay ı n No:52, Ankara, s: 302.
  • Kimball, B.A. 1983. Conduction Transfer Functions for Predicting Haat Fluxes into Various Soils. Transactions of the ASAE, pp.211-218.
  • Kurpasca, S. and Sl ı pek, Z. 1995. Mathematical Model of Heat and Mass Exchange in a Garden Subsoii during Warm-air Heating. Journal of Agricultural Engineering Research, 62:49-60.
  • Puri, V. M. 1986. Feasibil ı ty and Performance Curves for Intermittent Earth Tube Haat Exchangers. Transaction of the ASAE, 29:526-532.
  • Segerlind,L. J. 1984. Applied Finite Element Analysis. John Wiley&Sons, New York, p. 427.
  • Wang, H.Y. 1977. Handbook of Essential Forrnulae and Data on Heat Transfer for Engineers. London, p. 236.
  • Zienkiewicz, 0.C. and 'raylar, R.L.. 1994. The Finite Element Method. Vol 1. McGraw-Hill Inc., London, p. 648.

Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon

Year 1999, Volume: 05 Issue: 01, 77 - 83, 01.01.1999

Abstract

Bu çal ışmada, sera taban ı s ı tma sistemi, sonlu eleman yöntemi kullan ı larak modellenmi ş ve simüle edilmiştir. Toprak 30 cm , ince kum 6 cm , kaba kum 6 cm , perlit 6 cm ve çak ı l 12 cm tabakalar ı ndan oluştuğ u öngörülen taban kesiti, 66 düğ üm noktal ı 100 adet üçgen elemana bolünmüştür. Taban ı s ı tma sisteminde ı s ı tma hatlar ı aras ı uzakl ı k 30 crrı 'd ı r. Toprak üst yüzeyinde hava s ı caklığı n ı n 15 °C ve konveksiyonla ı s ı transfer katsay ı s ı n ı n 10 W m-2 °C-1 olduğ u s ı n ı r koşullar alt ı nda 3.5 W m'1, 4.0 W m-1 ve 4.5 W rn'l 'lik ı s ı akı ları ndan kaynaklanan s ı cakl ı k değişimleri araşt ı rı lm ışt ı r. Bu kaynak ak ı lannda ı s ı tma noktas ı ndaki sı cakl ı k değerleri s ı ras ı yla 28.10, 29.97 ve 31.84°C olarak saptanm ışt ı r. Toprak neminin 0.15 m3m-3, toprak ı s ı l kondüktivitesinin 0.819 W m-1°C-1, ve kaynak ı s ı akı s ı n ı n 4 W m-1 olduğ u koş ullarda dü ğ üm noktalar ı ndaki s ı cakl ı k değerleri 17.67 ile 31.47 °C aras ı nda değ iştiği hesaplanm ışt ı r. Farkl ı koşullar eş s ı cakl ı k eğ rileri kullan ı larak irdelenmiştir. Sonuç olarak, sera taban ı s ı tma uygulamalar ı nda sonlu eleman yöntemi, güçlü bir tasar ı m arac ı olarak kullan ı labilir.

References

  • Anonymous, 1979. Soil Warming in Horticulture, Technical Information Sheet.
  • Day ı oğ lu, M, A. 1997. Tabandan Is ı tilmış Bı r Saks ı daki Sı cakl ı k Profilinin Sonlu Elemanlar Yöntemiyle Analizi. Tar ı msal Mekanizasyon 17. Ulusal Kongresi, s. 902-910, Tokat.
  • Fagan, M.J. 1992. Finite Element Analysis Theory and Pract ı ce. Longman Scientific & Technical, New York, s. 315.
  • Franca, A. S., Oliveira, L. S. Haghighi K. and Krutz G.W. 1995. The Application of Adaptive Finite Element Analysis to Haat and Mass Transfer Problems. Journal of Agricultural Engineering Research, 62:49-60.
  • Incropera, F. P. and DeWitt, D. P., 1996. Fundamentals of Haat and Mass Transfer. John Wiley & Sons,New York, p. 836.
  • Kakaç, S. 1982. Is ı Transferine Giri ş I: İ s ı lletimi., 0.D.T.O. Mühendislik Fakültesi Yay ı n No:52, Ankara, s: 302.
  • Kimball, B.A. 1983. Conduction Transfer Functions for Predicting Haat Fluxes into Various Soils. Transactions of the ASAE, pp.211-218.
  • Kurpasca, S. and Sl ı pek, Z. 1995. Mathematical Model of Heat and Mass Exchange in a Garden Subsoii during Warm-air Heating. Journal of Agricultural Engineering Research, 62:49-60.
  • Puri, V. M. 1986. Feasibil ı ty and Performance Curves for Intermittent Earth Tube Haat Exchangers. Transaction of the ASAE, 29:526-532.
  • Segerlind,L. J. 1984. Applied Finite Element Analysis. John Wiley&Sons, New York, p. 427.
  • Wang, H.Y. 1977. Handbook of Essential Forrnulae and Data on Heat Transfer for Engineers. London, p. 236.
  • Zienkiewicz, 0.C. and 'raylar, R.L.. 1994. The Finite Element Method. Vol 1. McGraw-Hill Inc., London, p. 648.
There are 12 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Mehmet Ali Dayıoğlu This is me

Publication Date January 1, 1999
Published in Issue Year 1999 Volume: 05 Issue: 01

Cite

APA Dayıoğlu, M. A. (1999). Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon. Journal of Agricultural Sciences, 05(01), 77-83.
AMA Dayıoğlu MA. Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon. J Agr Sci-Tarim Bili. January 1999;05(01):77-83.
Chicago Dayıoğlu, Mehmet Ali. “Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model Ve Simülasyon”. Journal of Agricultural Sciences 05, no. 01 (January 1999): 77-83.
EndNote Dayıoğlu MA (January 1, 1999) Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon. Journal of Agricultural Sciences 05 01 77–83.
IEEE M. A. Dayıoğlu, “Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon”, J Agr Sci-Tarim Bili, vol. 05, no. 01, pp. 77–83, 1999.
ISNAD Dayıoğlu, Mehmet Ali. “Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model Ve Simülasyon”. Journal of Agricultural Sciences 05/01 (January 1999), 77-83.
JAMA Dayıoğlu MA. Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon. J Agr Sci-Tarim Bili. 1999;05:77–83.
MLA Dayıoğlu, Mehmet Ali. “Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model Ve Simülasyon”. Journal of Agricultural Sciences, vol. 05, no. 01, 1999, pp. 77-83.
Vancouver Dayıoğlu MA. Sera Taban Isıtma Sisteminin Tasarımında Sonlu Eleman Yöntemi: Matematiksel Model ve Simülasyon. J Agr Sci-Tarim Bili. 1999;05(01):77-83.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).