Review
BibTex RIS Cite
Year 2025, Volume: 31 Issue: 1, 1 - 11, 14.01.2025

Abstract

References

  • Abdelhamid S M, Edris A E & Sadek Z (2023). Novel approach for the inhibition of Helicobacter pylori contamination in yogurt using selected probiotics combined with eugenol and cinnamaldehyde nanoemulsions. Food chemistry 417: 135877. https://doi.org/10.1016/j.foodchem.2023.135877
  • Agharkar M & Mane S (2021). Utilization of gold nanoparticles to detect formalin adulteration in milk. Materials Today: Proceedings 45: 4421-4423. https://doi.org/10.1016/j.matpr.2020.12.233
  • Al-Abduljabbar A & Farooq I (2023). Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 15: 65. https://doi.org/10.3390/polym15010065
  • Al-Moghazy M, Mahmoud M & Nada A A (2020). Fabrication of cellulose-based adhesive composite as an active packaging material to extend the shelf life of cheese. International Journal of Biological Macromolecules 160: 264-275. https://doi.org/10.1016/j.ijbiomac.2020.05.217
  • Artiga-Artigas M, Acevedo-Fani A & Martín-Belloso O (2017). Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76: 1-12. https://doi.org/10.1016/j.foodcont.2017.01.001
  • Bagale U, Kadi A, Abotaleb M, Potoroko I & Sonawane S H (2023). Prospect of bioactive curcumin nanoemulsion as effective agency to improve milk based soft cheese by using ultrasound encapsulation approach. International Journal of Molecular Sciences 24: 2663. https://doi.org/10.3390/ijms24032663
  • Bagherpour S, Alizadeh A, Ghanbarzadeh S, Mohammadi M & Hamishehkar H (2017). Preparation and characterization of beta-sitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Bioscience 20: 51-55. https://doi.org/10.1016/j.fbio.2017.07.010
  • Bajpai V K, Kamle M, Shukla S, Mahato D K, Chandra P, Hwang S K, Kumar P, Huh Y S & Han Y K (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26: 1201–1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Banville C, Vuillemard J C & Lacroix C (2000). Comparison of different methods for fortifying Cheddar cheese with vitamin D. International Dairy Journal 10: 375-382. https://doi.org/10.1016/S0958-6946(00)00054-6
  • Baranwal J, Barse B, Gatto G, Broncova G & Kumar A (2022). Electrochemical sensors and their applications: A review. Chemosensors 10: 363. https://doi.org/10.3390/chemosensors10090363
  • Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren E, Shi X & Li Y (2020). Enhanced transport of shape and rigidity-tuned?-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Letters 20(2). https://doi.org/10.1021/acs.nanolett.9b04841
  • Berekaa M M (2015). Nanotechnology in food industry; advances in food processing, packaging and food safety. International Journal of Current Microbiology and Applied Sciences 4: 345-357. ISSN: 2319-7706. http://www.ijcmas.com
  • Bondu C & Yen F T (2022). Nanoliposomes, from food industry to nutraceuticals: Interests and uses. Innovative Food Science and Emerging Technologies 81. https://doi.org/10.1016/j.ifset.2022.103140
  • Borrin T R, Georges E L, Brito-Oliveira T C, Moraes I C F & Pinho S C (2018). Technological and sensory evaluation of pineapple ice creams incorporating curcumin-loaded nanoemulsions obtained by the emulsion inversion point method. International Journal of Dairy Technology 71(2). https://doi.org/10.1111/1471-0307.12451
  • Braicu C, Gulei D, Raduly L, Harangus A, Rusu A & Berindan-Neagoe I (2019). Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Molecular Aspects of Medicine 70: 90-105. https://doi.org/10.1016/j.mam.2019.10.007
  • Brandelli A, Lopes N A & Pinilla C M B (2023). Nanostructured antimicrobials for quality and safety improvement in dairy products. Foods, 12: 2549. https://doi.org/10.3390/foods12132549
  • Bueno L, de Araujo W R, Salles M O, Kussuda M Y & Paixão T R L C (2014). Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors 2: 251-266. https://doi.org/10.3390/chemosensors2040251
  • Chang R, Liu B, Wang Q, Zhang J, Yuan F, Zhang H, Chen S, Liang S & Li Y (2022). The encapsulation of lycopene with α-lactalbumin nanotubes to enhance their anti-oxidant activity, viscosity and colloidal stability in dairy drink. Food Hydrocolloids 131: https://doi.org/10.1016/j.foodhyd.2022.107792
  • Chen F, Fan G Q, Zhang Z, Zhang R, Deng Z Y & McClements D J (2017). Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate. Food Research International 100: 387–395. https://doi.org/10.1016/j.foodres.2017.07.039
  • da Silva Malheiros P, Daroit D J & Brandelli A (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology 21: 284–292. https://doi.org/10.1016/j.tifs.2010.03.003
  • de Campo C, Queiroz Assis R, Marques da Silva M, Haas Costa T M, Paese K, Stanisçuaski Guterres S, de Oliveira Rios A & Hickmann Flôres S (2019). Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chemistry 301: 125230. https://doi.org/10.1016/j.foodchem.2019.125230
  • Delshadi R, Bahrami A, Tafti A G, Barba F J & Williams L L (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology 104: 72–834. https://doi.org/10.1016/j.tifs.2020.07.004
  • Dong L & Zhong Q (2019). Dispersible biopolymer particles loaded with lactase as a potential delivery system to control lactose hydrolysis in milk. Journal of Agricultural and Food Chemistry 67: 6559–6568. https://doi.org/10.1021/acs.jafc.9b01546
  • El-Ansary A & Faddah L M (2010). Nanoparticles as biochemical sensors. Nanotechnology, Science and Applications 3: 65-76. https://doi.org/10.2147/NSA.S8199
  • El-Sayed H S & El-Sayed S M (2021). A modern trend to preserve white soft cheese using nano-emulsified solutions containing cumin essential oil. Environmental Nanotechnology, Monitoring & Management 100499. https://doi.org/10.1016/j.enmm.2021.100499
  • Feng Z Z, Li M Y, Wang Y T & Zhu M J (2018). Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties. LWT 96: 234-241. https://doi.org/10.1016/j.lwt.2018.04.084
  • Ghorbanzade T, Jafari S M, Akhavan S & Hadavi R (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry 216: 146–152. https://doi.org/10.1016/j.foodchem.2016.08.022
  • Graveland-Bikker J F, Fritz G, Glatter O & de Kruif C G (2006). Growth and structure of α-lactalbumin nanotubes. Journal of Applied Crystallography 39: 180-184. https://doi.org/10.1107/S0021889805043244
  • Guinati B G S, Sousa L R, Oliveira K A & Coltro W K (2021). Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. Analytical Methods: Advancing Methods and Applications 13: 5383-5390. https://doi.org/10.1039/D1AY01339D
  • Hashemi F S, Farzadnia F, Aghajani A, NobariAzar F A & Pezeshki A (2020). Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Science & Nutrition 8: 4185–4195. https://doi.org/10.1002/fsn3.1712
  • Hegde H R, Chidangil S & Sinha R K (2021). Refractive index and formaldehyde sensing with silver nanocubes. Royal Society of Chemistry Advances 11: 8042-8050. https://doi.org/10.1039/D0RA10161C
  • Hussein J, El-Bana M, Abdel Latif Y, El-Sayed S, Youssef A, Elnaggar M & Medhat D (2023). Processed cheeses fortified by Laurus nobilis L. extract nanoemulsion ameliorate hyperhomocysteinemia in Ehrlich ascites carcinoma model. Egyptian Journal of Chemistry 66(2): 199-211. https://doi.org/10.21608/ejchem.2022.135198.5944
  • Ipsen R, Otte J & Qvist K B (2001). Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. Journal of Dairy Research 68(2). https://doi.org/10.1017/S0022029901004769
  • Jena B K & Raj C R (2008). Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosensors and Bioelectronics 23: 1285–1290. https://doi.org/10.1016/j.bios.2007.11.014
  • Joung H J, Choi M J, Kim J T, Park S H, Park H J & Shin G H (2016). Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. Journal of Food Science 81(3): N745–N753. https://doi.org/10.1111/1750-3841.13224
  • Kadam A A, Saratale G D, Ghodake G S, Saratale R G, Shahzad A, Magotra V K, Kumar M, Palem R R & Sung J S (2022). Recent advances in the development of laccase-based biosensors via nano-immobilization techniques. Chemosensors, 10(58): 58. https://doi.org/10.3390/chemosensors10020058
  • Kaneko N, Horii K, Akitomi J, Kato S, Shiratori I & Waga I (2018). An aptamer-based biosensor for direct, label-free detection of melamine in raw milk. Sensors (Switzerland) 18: 3227. https://doi.org/10.3390/s18103227
  • Katouzian I & Jafari S M (2019). Nanotubes of α-lactalbumin for encapsulation of food ingredients. In S M Jafari (Ed.), Biopolymer Nanostructures for Food Encapsulation Purposes. Nanoencapsulation in the Food Industry (pp. 101–124). Academic Press. https://doi.org/10.1016/B978-0-12-815663-6.00004-5
  • Khafoor A A, Karim A S & Sajadi S M (2023). Recent progress in synthesis of nano-based liposomal drug delivery systems: A glance to their medicinal applications. Results in Surfaces and Interfaces 11: 100124. https://doi.org/10.1016/j.rsurfi.2023.100124
  • Khan I, Saeed K & Khan I (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12: 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khansili N, Rattu G & Krishna P M (2018). Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B: Chemical 65: 35-49. https://doi.org/10.1016/j.snb.2018.03.004
  • Khorasani S, Danaei M & Mozafari M R (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science and Technology 79. https://doi.org/10.1016/j.tifs.2018.07.009
  • Kumar T S M, Kumar K S, Rajini N, Siengchin S, Ayrilmis N & Rajulu A V (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175: 107074. https://doi.org/10.1016/j.compositesb.2019.107074
  • Kumar D, Farrukh M & Faisal N (2021). Nanocomposites in the food packaging industry: Recent trends and applications. In I Management Association (Ed.), Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security (pp. 122-146). IGI Global. https://doi.org/10.4018/978-1-7998-5354-1.ch006
  • Lane K, Derbyshire E, Smith C, Mahadevan K & Li W (2013). Sensory evaluation of a yogurt drink containing an omega-3 nanoemulsion with enhanced bioavailability. Proceedings of the Nutrition Society, 72(OCE2), E99. https://doi.org/10.1017/S0029665113001109
  • Li Y, Zhang X & Zhang R (2019). Preparation and characterization of electrospun casein/pectin nanofibers for potential application in yogurt. Journal of Food Science and Technology 56: 676-682
  • Li Q, Lv L, Liu Y, Fang Z, Deng Q, Liang W, Wu Y & Chen Z (2023). Preparation, characterization and application of bacteriocin CAMT6 nanoliposomes using resveratrol as a novel stabilizer. Food Chemistry, 403, 134293. https://doi.org/10.1016/j.foodchem.2022.134293
  • Lin L, Gu Y & Cui H (2019). Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packaging and Shelf Life 19: 86-93 https://doi.org/10.1016/j.fpsl.2018.12.005
  • Liu S, Yuan L, Yue X, Zheng Z & Tang Z (2008). Recent advances in nanosensors for organophosphate pesticide detection. Advanced Powder Technology 19: 419–441. https://doi.org/10.1016/S0921-8831(08)60910-3
  • Liu B, Xu H, Zhao H Y, Liu W, Zhao L Y & Li Y (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers 157: 842-849.
  • Liu B, Thum C, Wang Q, Feng C, Li T, Damiani Victorelli F, Li X, Chang R, Chen S, Gong Y & Li Y (2023). The fortification of encapsulated soy isoflavones and texture modification of soy milk by α-lactalbumin nanotubes. Food Chemistry 419 pp. https://doi.org/10.1016/j.foodchem.2023.135979
  • Loewen A, Chan B & Li-Chan E C Y (2018). Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chemistry 240: 472–481. https://doi.org/10.1016/j.foodchem.2017.07.126
  • Lopez B P & Merkoci A (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science and Technology 22: 625–639. https://doi.org/10.1016/j.tifs.2011.04.001
  • Lopes N A & Brandelli A (2018). Nanostructures for delivery of natural antimicrobials in food. Critical Reviews in Food Science and Nutrition, 58: 2202–2212. https://doi.org/10.1080/10408398.2017.1308915
  • Lohith Kumar D H & Sarkar P (2018). Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters, 16, 59-70. https://doi.org/10.1007/s10311-017-0663-x
  • Maurya V K & Aggarwal M (2019). Fabrication of nano-structured lipid carrier for encapsulation of vitamin D3 for fortification of ‘Lassi’; A milk based beverage. The Journal of Steroid Biochemistry and Molecular Biology 193: 105429. https://doi.org/10.1016/j.jsbmb.2019.105429
  • McClements D J (2010). Design of nano-laminated coatings to control bioavailability of lipophilic food components. Journal of Food Science 75(1). https://doi.org/10.1111/j.1750-3841.2009.01452.x
  • Medeiros A K O C, Gomes C C, Amaral M L Q A, Medeiros L D G, Medeiros I, Porto D L, Aragão C F S, Maciel B L L, Morais A H A & Passos T S (2019). Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chemistry 270: 562–572. https://doi.org/10.1016/j.foodchem.2018.07.099
  • Miljkovic M G, Nesic A R, Davidovic S Z, Radovanovic N R & Dimitrijevic S I (2017). The use of nanoemulsion-based edible coatings to prolong the shelf-life of cheese. Journal of International Scientific Publications 5: 131-138
  • Mohaisen M J M, Yildirim R M, Yilmaz M T & Durak M Z (2019). Production of functional yogurt drink, apple and orange juice using nano-encapsulated L. brevis within sodium alginate-based biopolymers. Science of Advanced Materials 11: 1788–1797. https://doi.org/10.1166/sam.2019.3708
  • Mohammad Z H, Ahmad F, Ibrahim S A & Zaidi S (2022). Application of nanotechnology in different aspects of the food industry. Discover. Food 2: 12. https://doi.org/10.1007/s44187-022-00013-9
  • Mohammed N K, Muhialdin B J & Hussin A S M (2020). Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream. Food Science and Nutrition 8(6). https://doi.org/10.1002/fsn3.1500
  • Mohammadi R, Mahmoudzadeh M, Atefi M, Khosravi-Darani K & Mozafari M R (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology 68: 11–23. https://doi.org/10.1111/1471-0307.12174
  • Manoj D, Shanmugasundaram S & Anandharamakrishnan C (2021). Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 126: 108017. https://doi.org/10.1016/j.foodcont.2021.108017
  • Montes de Oca-Ávalos J M, Candal R J & Herrera M L (2017). Nanoemulsions: Stability and physical properties. Current Opinion in Food Science 16: 1–19. https://doi.org/10.1016/j.cofs.2017.06.003
  • Maqsoudlou A, Assadpour E, Mohebodini H & Jafari S M (2022). The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition 62: 3208–3231. https://doi.org/10.1080/10408398.2020.1863907
  • Nanda S S, Yi D K & Kim K (2016). Graphene oxide based fluorometric detection of hydrogen peroxide in milk. Journal of Nanoscience and Nanotechnology 16: 1181–1185. https://doi.org/10.1166/jnn.2016.10646
  • Nascimento C F, Santos P M, Pereira-Filho E R & Rocha F R P (2017). Recent advances on determination of milk adulterants. Food Chemistry, 221: 1232-1244. https://doi.org/10.1016/j.foodchem.2016.11.034
  • Nickols-Richardson S M & Piehowski K E (2008). Nanotechnology in nutritional sciences. Minerva Biotecnologica 20: 117–126.
  • Nile S H, Baskar V, Selvaraj D, Nile A, Xiao J & Kai G (2020). Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Letters, 12, 1-34. https://doi.org/10.1007/s40820-020-0383-9
  • Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević N Ž, Gadjanski I & Vidić J (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety 20: 2428–2454. https://doi.org/10.1111/1541-4337.12727
  • Panghal A, Chhikara N, Anshid V, Sai Charan M V, Surendran V, Malik A & Dhull S B (2019). Nanoemulsions: A promising tool for dairy sector. In R Prasad, V Kumar, M Kumar & D Choudhary (Eds.), Nanobiotechnology in Bioformulations (pp. 67-92). Nanotechnology in the Life Sciences. Springer. https://doi.org/10.1007/978-3-030-17061-5_4
  • Pateiro M, Gómez B, Munekata P E S, Barba F J, Putnik P, Kovačević D B & Lorenzo J M (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules (Basel, Switzerland) 26(6), 1547. https://doi.org/10.3390/molecules26061547
  • Patel D K, Kim H B, Dutta S D, Ganguly K & Lim K T (2020). Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13(7): 1679. https://doi.org/10.3390/ma13071679
  • Pinilla C M & Brandelli A (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies, 36: 287–293. https://doi.org/10.1016/j.ifset.2016.07.017
  • Pinilla C M, Noreña C P & Brandelli A (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry 220: 470–476. https://doi.org/10.1016/j.foodchem.2016.10.027
  • Pu H, Xu Y, Sun D W, Wei Q & Li X (2021). Optical nanosensors for biofilm detection in the food industry: Principles, applications and challenges. Critical Reviews in Food Science and Nutrition, 61(13): 2107–2124. https://doi.org/10.1080/10408398.2020.1808877
  • Pudtikajorn K, Sae-leaw T & Benjakul S (2021). Characterization of fortified pasteurized cow milk with nanoliposome loaded with skipjack tuna eyeball oil. International Journal of Food Science and Technology 56(12): 5893–5903. https://doi.org/10.1111/ijfs.15196
  • Rashidinejad A, Birch E J, Sun-Waterhouse D & Everett D W (2016). Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food and Bioproducts Processing 100: 238–245. https://doi.org/10.1016/j.fbp.2016.07.005
  • Rasti B, Erfanian A & Selamat J (2017). Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chemistry 230: 690–696. https://doi.org/10.1016/j.foodchem.2017.03.089
  • Rezaei A, Fathi M & Jafari S M (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88: 146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003
  • Rostamabadi H, Assadpour E, Tabarestani H S, Falsafi S R & Jafari S M (2020). Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science & Technology 100: 190–209. https://doi.org/10.1016/j.tifs.2020.04.012
  • Sanabria L A A (2012). Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. Louisiana State University, Master’s Theses 206. Retrieved from https://repository.lsu.edu/gradschool_theses/206
  • Saxena D C & Bhardwaj M (2017). Development of organic and inorganic nanoparticles and their subsequent application in nanocomposites for food and non-food packaging systems. Journal of Nanomedicine and Nanotechnology. https://doi.org/10.4172/2157-7439-C1-052
  • Schmidt S E, Holub G, Sturino J M & Taylor T M (2009). Suppression of Listeria monocytogenes scott a in fluid milk by free and liposome-entrapped nisin. Probiotics and Antimicrobial Proteins 1(2): 152–158. https://doi.org/10.1007/s12602-009-9022-y
  • Senthil M K, Kumar K S, Rajini N, Siengchin S, Ayrilmis N & Varada Rajulu A (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175: 107074. https://doi.org/10.1016/j.compositesb.2019.107074
  • Sharma C, Dhiman R, Rokana N & Panwar H (2017). Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology, 8: 1735. https://doi.org/10.3389/fmicb.2017.01735
  • Sharma A, Nagarajan J, Gopalakrishnan K, Bodana V, Singh A, Prabhakar P K, Suhag R & Kumar R (2023). Nanotechnology applications and implications in food industry. In R Pudake, N Chauhan & C Kole (Eds.), Nanotechnology Applications for Food Safety and Quality Monitoring (pp. 171–182). https://doi.org/10.1016/B978-0-323-85791-8.00016-1
  • Silva H D, Cerqueira M Â & Vicente A A (2012). Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technology 5(3): 854–867. https://doi.org/10.1007/s11947-011-0683-7
  • Siyar Z, Motamedzadegan A, Milani J M & Rashidinejad A (2022). The effect of the liposomal encapsulated saffron extract on the physicochemical properties of a functional ricotta cheese. Molecules (Basel, Switzerland), 27(1): 120. https://doi.org/10.3390/molecules27010120
  • Song L, Zhang L, Huang Y, Chen L, Zhang G, Shen Z, Zhang J, Xiao Z & Chen T (2017). Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157. Scientific Reports, 7: 3288. https://doi.org/10.1038/s41598-017-03495-1
  • Srinivasan V, Chavan S, Jain U & Tarwadi K (2019). Liposomes for nanodelivery systems in food products. In R Pudake, N Chauhan & C Kole (Eds.), Nanoscience for Sustainable Agriculture. Springer. https://doi.org/10.1007/978-3-319-97852-9_24
  • Stasyuk N Y, Gayda G Z, Zakalskiy A E, Fayura L R, Zakalska O M, Sibirny A A, Nisnevitch M & Gonchar M V (2022). Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn (Hg)S nanoparticles. Talanta, 238(Pt 1), 122996. https://doi.org/10.1016/j.talanta.2021.122996
  • Syama M A, Arora S, Gupta C, Sharma A & Sharma V (2019). Enhancement of vitamin D2 stability in fortified milk during light exposure and commercial heat treatments by complexation with milk proteins. Food Bioscience 29: 17–23. https://doi.org/10.1016/j.fbio.2019.03.005
  • Tarhan Ö, Hamaker B R & Campanella O H (2021). Structure and binding ability of self-assembled α-lactalbumin protein nanotubular gels. Biotechnology Progress, 37(3), e3127. https://doi.org/10.1002/btpr.3127
  • Todorov S D, Popov I, Weeks R & Chikindas M L (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods (Basel, Switzerland) 11(9): 3145. https://doi.org/10.3390/foods11193145
  • Wang J, Zhou Y & Jiang L (2021). Bio-inspired track-etched polymeric nanochannels: Steady-StateBiosensors for Detection of Analytes. ACS Nano 15: 18974-19013. https://doi.org/10.1021/acsnano.1c08582
  • Wang Q, Yu W, Li Z, Liu B, Hu Y, Chen S, de Vries R, Yuan Y, Erazo Quintero L E, Hou G, Hu C & Li Y (2022). The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocolloids, 131: 107807. https://doi.org/10.1016/j.foodhyd.2022.107807
  • Wei J N, Zeng X A, Tang T, Jiang Z & Liu Y Y (2018). Unfolding and nanotube formation of ovalbumin induced by pulsed electric field. Innovative Food Science and Emerging Technologies 45: 249–254. https://doi.org/10.1016/j.ifset.2017.10.011
  • Xue J, Wu T, Dai Y & Xia Y (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(9): 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Vasconcelos H, Matias A, Jorge P, Saraiva C, Mendes J, Araújo J, Dias B, Santos P, Almeida J M M M & Coelho L C C (2021). Optical biosensor for the detection of hydrogen peroxide in milk. Chemistry Proceedings 5: 55. https://doi.org/10.3390/CSAC2021-10466
  • van der Hee R M, Miret S, Slettenaar M, Duchateau G S, Rietveld A G, Wilkinson J E, Quail P J, Berry M J, Dainty J R, Teucher B & Fairweather-Tait S J (2009). Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk. Journal of the American Dietetic Association, 109(5): 830–835. https://doi.org/10.1016/j.jada.2009.02.017
  • Yotova L, Yaneva S & Marinkova D (2013). Biomimetic nanosensors for determination of toxic compounds in food and agricultural products. Journal Chemistry Technology and Metallurgy 48: 215–227
  • Zarrabi A, Alipoor Amro Abadi M, Khorasani S, Mohammadabadi M R, Jamshidi A, Torkaman S, Taghavi E, Mozafari M R & Rasti B (2020). Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules (Basel, Switzerland) 25(3): 638. https://doi.org/10.3390/molecules25030638
  • Zhang Y & Zhong Q (2018). Freeze-dried capsules prepared from emulsions with encapsulated lactase as a potential delivery system to control lactose hydrolysis in milk. Food Chemistry 241: 397–402. https://doi.org/10.1016/j.foodchem.2017.09.004
  • Zhang M, Ahmed A & Xu L (2023). Electrospun Nanofibers for Functional Food Packaging Application. Materials, 16(17): 5937. https://doi.org/10.3390/ma16175937
  • Zhou Y & Kubota L T (2020). Trends in electrochemical sensing. Chem Electro Chem 7: 3684–3685. https://doi.org/10.1002/celc.202001025

Nanotechnological Applications in Current Innovative Approaches in Dairy Technology- A review

Year 2025, Volume: 31 Issue: 1, 1 - 11, 14.01.2025

Abstract

Nanotechnology offers significant potential in the dairy industry, influencing a range of products such as milk, cheese, yogurt, butter, fermented milk, and buttermilk. The use of both bottom-up and top-down processing approaches yields extensive insights into the intrinsic and extrinsic characteristics of dairy products. A variety of nano-techniques including nanoemulsion, nanoencapsulation, nanoliposomes, nanotubes, nanofibers, and nanocapsules are employed within the dairy industry. These methods, in conjunction with nanosensors, nanolaminates, and nanocoatings, act as efficient packaging solutions, providing critical information on product safety, stability, and quality. Nanotechnology is also highly effective in detecting foodborne pathogens and excels in pathogen control. It plays an essential role in food fortification by encapsulating nutrients, ingredients, and compounds, thus enhancing the texture, taste, aroma, quality, and nutritional value of food. Notably, nanoparticles such as zinc oxide, silver, and titanium demonstrate potent mechanisms for disrupting bacterial cell walls, aiding in compound absorption, and improving physiological functions. This review presents the applications of nanotechnology in the dairy industry, along with pertinent studies and their outcomes regarding the utilization of these technologies in dairy products.

References

  • Abdelhamid S M, Edris A E & Sadek Z (2023). Novel approach for the inhibition of Helicobacter pylori contamination in yogurt using selected probiotics combined with eugenol and cinnamaldehyde nanoemulsions. Food chemistry 417: 135877. https://doi.org/10.1016/j.foodchem.2023.135877
  • Agharkar M & Mane S (2021). Utilization of gold nanoparticles to detect formalin adulteration in milk. Materials Today: Proceedings 45: 4421-4423. https://doi.org/10.1016/j.matpr.2020.12.233
  • Al-Abduljabbar A & Farooq I (2023). Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 15: 65. https://doi.org/10.3390/polym15010065
  • Al-Moghazy M, Mahmoud M & Nada A A (2020). Fabrication of cellulose-based adhesive composite as an active packaging material to extend the shelf life of cheese. International Journal of Biological Macromolecules 160: 264-275. https://doi.org/10.1016/j.ijbiomac.2020.05.217
  • Artiga-Artigas M, Acevedo-Fani A & Martín-Belloso O (2017). Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76: 1-12. https://doi.org/10.1016/j.foodcont.2017.01.001
  • Bagale U, Kadi A, Abotaleb M, Potoroko I & Sonawane S H (2023). Prospect of bioactive curcumin nanoemulsion as effective agency to improve milk based soft cheese by using ultrasound encapsulation approach. International Journal of Molecular Sciences 24: 2663. https://doi.org/10.3390/ijms24032663
  • Bagherpour S, Alizadeh A, Ghanbarzadeh S, Mohammadi M & Hamishehkar H (2017). Preparation and characterization of beta-sitosterol-loaded nanostructured lipid carriers for butter enrichment. Food Bioscience 20: 51-55. https://doi.org/10.1016/j.fbio.2017.07.010
  • Bajpai V K, Kamle M, Shukla S, Mahato D K, Chandra P, Hwang S K, Kumar P, Huh Y S & Han Y K (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26: 1201–1214. https://doi.org/10.1016/j.jfda.2018.06.011
  • Banville C, Vuillemard J C & Lacroix C (2000). Comparison of different methods for fortifying Cheddar cheese with vitamin D. International Dairy Journal 10: 375-382. https://doi.org/10.1016/S0958-6946(00)00054-6
  • Baranwal J, Barse B, Gatto G, Broncova G & Kumar A (2022). Electrochemical sensors and their applications: A review. Chemosensors 10: 363. https://doi.org/10.3390/chemosensors10090363
  • Bao C, Liu B, Li B, Chai J, Zhang L, Jiao L, Li D, Yu Z, Ren E, Shi X & Li Y (2020). Enhanced transport of shape and rigidity-tuned?-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Letters 20(2). https://doi.org/10.1021/acs.nanolett.9b04841
  • Berekaa M M (2015). Nanotechnology in food industry; advances in food processing, packaging and food safety. International Journal of Current Microbiology and Applied Sciences 4: 345-357. ISSN: 2319-7706. http://www.ijcmas.com
  • Bondu C & Yen F T (2022). Nanoliposomes, from food industry to nutraceuticals: Interests and uses. Innovative Food Science and Emerging Technologies 81. https://doi.org/10.1016/j.ifset.2022.103140
  • Borrin T R, Georges E L, Brito-Oliveira T C, Moraes I C F & Pinho S C (2018). Technological and sensory evaluation of pineapple ice creams incorporating curcumin-loaded nanoemulsions obtained by the emulsion inversion point method. International Journal of Dairy Technology 71(2). https://doi.org/10.1111/1471-0307.12451
  • Braicu C, Gulei D, Raduly L, Harangus A, Rusu A & Berindan-Neagoe I (2019). Altered expression of miR-181 affects cell fate and targets drug resistance-related mechanisms. Molecular Aspects of Medicine 70: 90-105. https://doi.org/10.1016/j.mam.2019.10.007
  • Brandelli A, Lopes N A & Pinilla C M B (2023). Nanostructured antimicrobials for quality and safety improvement in dairy products. Foods, 12: 2549. https://doi.org/10.3390/foods12132549
  • Bueno L, de Araujo W R, Salles M O, Kussuda M Y & Paixão T R L C (2014). Voltammetric electronic tongue for discrimination of milk adulterated with urea, formaldehyde and melamine. Chemosensors 2: 251-266. https://doi.org/10.3390/chemosensors2040251
  • Chang R, Liu B, Wang Q, Zhang J, Yuan F, Zhang H, Chen S, Liang S & Li Y (2022). The encapsulation of lycopene with α-lactalbumin nanotubes to enhance their anti-oxidant activity, viscosity and colloidal stability in dairy drink. Food Hydrocolloids 131: https://doi.org/10.1016/j.foodhyd.2022.107792
  • Chen F, Fan G Q, Zhang Z, Zhang R, Deng Z Y & McClements D J (2017). Encapsulation of omega-3 fatty acids in nanoemulsions and microgels: Impact of delivery system type and protein addition on gastrointestinal fate. Food Research International 100: 387–395. https://doi.org/10.1016/j.foodres.2017.07.039
  • da Silva Malheiros P, Daroit D J & Brandelli A (2010). Food applications of liposome-encapsulated antimicrobial peptides. Trends in Food Science & Technology 21: 284–292. https://doi.org/10.1016/j.tifs.2010.03.003
  • de Campo C, Queiroz Assis R, Marques da Silva M, Haas Costa T M, Paese K, Stanisçuaski Guterres S, de Oliveira Rios A & Hickmann Flôres S (2019). Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chemistry 301: 125230. https://doi.org/10.1016/j.foodchem.2019.125230
  • Delshadi R, Bahrami A, Tafti A G, Barba F J & Williams L L (2020). Micro and nano-encapsulation of vegetable and essential oils to develop functional food products with improved nutritional profiles. Trends in Food Science & Technology 104: 72–834. https://doi.org/10.1016/j.tifs.2020.07.004
  • Dong L & Zhong Q (2019). Dispersible biopolymer particles loaded with lactase as a potential delivery system to control lactose hydrolysis in milk. Journal of Agricultural and Food Chemistry 67: 6559–6568. https://doi.org/10.1021/acs.jafc.9b01546
  • El-Ansary A & Faddah L M (2010). Nanoparticles as biochemical sensors. Nanotechnology, Science and Applications 3: 65-76. https://doi.org/10.2147/NSA.S8199
  • El-Sayed H S & El-Sayed S M (2021). A modern trend to preserve white soft cheese using nano-emulsified solutions containing cumin essential oil. Environmental Nanotechnology, Monitoring & Management 100499. https://doi.org/10.1016/j.enmm.2021.100499
  • Feng Z Z, Li M Y, Wang Y T & Zhu M J (2018). Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties. LWT 96: 234-241. https://doi.org/10.1016/j.lwt.2018.04.084
  • Ghorbanzade T, Jafari S M, Akhavan S & Hadavi R (2017). Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chemistry 216: 146–152. https://doi.org/10.1016/j.foodchem.2016.08.022
  • Graveland-Bikker J F, Fritz G, Glatter O & de Kruif C G (2006). Growth and structure of α-lactalbumin nanotubes. Journal of Applied Crystallography 39: 180-184. https://doi.org/10.1107/S0021889805043244
  • Guinati B G S, Sousa L R, Oliveira K A & Coltro W K (2021). Simultaneous analysis of multiple adulterants in milk using microfluidic paper-based analytical devices. Analytical Methods: Advancing Methods and Applications 13: 5383-5390. https://doi.org/10.1039/D1AY01339D
  • Hashemi F S, Farzadnia F, Aghajani A, NobariAzar F A & Pezeshki A (2020). Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications. Food Science & Nutrition 8: 4185–4195. https://doi.org/10.1002/fsn3.1712
  • Hegde H R, Chidangil S & Sinha R K (2021). Refractive index and formaldehyde sensing with silver nanocubes. Royal Society of Chemistry Advances 11: 8042-8050. https://doi.org/10.1039/D0RA10161C
  • Hussein J, El-Bana M, Abdel Latif Y, El-Sayed S, Youssef A, Elnaggar M & Medhat D (2023). Processed cheeses fortified by Laurus nobilis L. extract nanoemulsion ameliorate hyperhomocysteinemia in Ehrlich ascites carcinoma model. Egyptian Journal of Chemistry 66(2): 199-211. https://doi.org/10.21608/ejchem.2022.135198.5944
  • Ipsen R, Otte J & Qvist K B (2001). Molecular self-assembly of partially hydrolysed α-lactalbumin resulting in strong gels with a novel microstructure. Journal of Dairy Research 68(2). https://doi.org/10.1017/S0022029901004769
  • Jena B K & Raj C R (2008). Optical sensing of biomedically important polyionic drugs using nano-sized gold particles. Biosensors and Bioelectronics 23: 1285–1290. https://doi.org/10.1016/j.bios.2007.11.014
  • Joung H J, Choi M J, Kim J T, Park S H, Park H J & Shin G H (2016). Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: Antioxidant property and in vitro digestion. Journal of Food Science 81(3): N745–N753. https://doi.org/10.1111/1750-3841.13224
  • Kadam A A, Saratale G D, Ghodake G S, Saratale R G, Shahzad A, Magotra V K, Kumar M, Palem R R & Sung J S (2022). Recent advances in the development of laccase-based biosensors via nano-immobilization techniques. Chemosensors, 10(58): 58. https://doi.org/10.3390/chemosensors10020058
  • Kaneko N, Horii K, Akitomi J, Kato S, Shiratori I & Waga I (2018). An aptamer-based biosensor for direct, label-free detection of melamine in raw milk. Sensors (Switzerland) 18: 3227. https://doi.org/10.3390/s18103227
  • Katouzian I & Jafari S M (2019). Nanotubes of α-lactalbumin for encapsulation of food ingredients. In S M Jafari (Ed.), Biopolymer Nanostructures for Food Encapsulation Purposes. Nanoencapsulation in the Food Industry (pp. 101–124). Academic Press. https://doi.org/10.1016/B978-0-12-815663-6.00004-5
  • Khafoor A A, Karim A S & Sajadi S M (2023). Recent progress in synthesis of nano-based liposomal drug delivery systems: A glance to their medicinal applications. Results in Surfaces and Interfaces 11: 100124. https://doi.org/10.1016/j.rsurfi.2023.100124
  • Khan I, Saeed K & Khan I (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 12: 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Khansili N, Rattu G & Krishna P M (2018). Label-free optical biosensors for food and biological sensor applications. Sensors and Actuators B: Chemical 65: 35-49. https://doi.org/10.1016/j.snb.2018.03.004
  • Khorasani S, Danaei M & Mozafari M R (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science and Technology 79. https://doi.org/10.1016/j.tifs.2018.07.009
  • Kumar T S M, Kumar K S, Rajini N, Siengchin S, Ayrilmis N & Rajulu A V (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175: 107074. https://doi.org/10.1016/j.compositesb.2019.107074
  • Kumar D, Farrukh M & Faisal N (2021). Nanocomposites in the food packaging industry: Recent trends and applications. In I Management Association (Ed.), Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security (pp. 122-146). IGI Global. https://doi.org/10.4018/978-1-7998-5354-1.ch006
  • Lane K, Derbyshire E, Smith C, Mahadevan K & Li W (2013). Sensory evaluation of a yogurt drink containing an omega-3 nanoemulsion with enhanced bioavailability. Proceedings of the Nutrition Society, 72(OCE2), E99. https://doi.org/10.1017/S0029665113001109
  • Li Y, Zhang X & Zhang R (2019). Preparation and characterization of electrospun casein/pectin nanofibers for potential application in yogurt. Journal of Food Science and Technology 56: 676-682
  • Li Q, Lv L, Liu Y, Fang Z, Deng Q, Liang W, Wu Y & Chen Z (2023). Preparation, characterization and application of bacteriocin CAMT6 nanoliposomes using resveratrol as a novel stabilizer. Food Chemistry, 403, 134293. https://doi.org/10.1016/j.foodchem.2022.134293
  • Lin L, Gu Y & Cui H (2019). Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packaging and Shelf Life 19: 86-93 https://doi.org/10.1016/j.fpsl.2018.12.005
  • Liu S, Yuan L, Yue X, Zheng Z & Tang Z (2008). Recent advances in nanosensors for organophosphate pesticide detection. Advanced Powder Technology 19: 419–441. https://doi.org/10.1016/S0921-8831(08)60910-3
  • Liu B, Xu H, Zhao H Y, Liu W, Zhao L Y & Li Y (2017). Preparation and characterization of intelligent starch/PVA films for simultaneous colorimetric indication and antimicrobial activity for food packaging applications. Carbohydrate Polymers 157: 842-849.
  • Liu B, Thum C, Wang Q, Feng C, Li T, Damiani Victorelli F, Li X, Chang R, Chen S, Gong Y & Li Y (2023). The fortification of encapsulated soy isoflavones and texture modification of soy milk by α-lactalbumin nanotubes. Food Chemistry 419 pp. https://doi.org/10.1016/j.foodchem.2023.135979
  • Loewen A, Chan B & Li-Chan E C Y (2018). Optimization of vitamins A and D3 loading in re-assembled casein micelles and effect of loading on stability of vitamin D3 during storage. Food Chemistry 240: 472–481. https://doi.org/10.1016/j.foodchem.2017.07.126
  • Lopez B P & Merkoci A (2011). Nanomaterials based biosensors for food analysis applications. Trends in Food Science and Technology 22: 625–639. https://doi.org/10.1016/j.tifs.2011.04.001
  • Lopes N A & Brandelli A (2018). Nanostructures for delivery of natural antimicrobials in food. Critical Reviews in Food Science and Nutrition, 58: 2202–2212. https://doi.org/10.1080/10408398.2017.1308915
  • Lohith Kumar D H & Sarkar P (2018). Encapsulation of bioactive compounds using nanoemulsions. Environmental Chemistry Letters, 16, 59-70. https://doi.org/10.1007/s10311-017-0663-x
  • Maurya V K & Aggarwal M (2019). Fabrication of nano-structured lipid carrier for encapsulation of vitamin D3 for fortification of ‘Lassi’; A milk based beverage. The Journal of Steroid Biochemistry and Molecular Biology 193: 105429. https://doi.org/10.1016/j.jsbmb.2019.105429
  • McClements D J (2010). Design of nano-laminated coatings to control bioavailability of lipophilic food components. Journal of Food Science 75(1). https://doi.org/10.1111/j.1750-3841.2009.01452.x
  • Medeiros A K O C, Gomes C C, Amaral M L Q A, Medeiros L D G, Medeiros I, Porto D L, Aragão C F S, Maciel B L L, Morais A H A & Passos T S (2019). Nanoencapsulation improved water solubility and color stability of carotenoids extracted from Cantaloupe melon (Cucumis melo L.). Food Chemistry 270: 562–572. https://doi.org/10.1016/j.foodchem.2018.07.099
  • Miljkovic M G, Nesic A R, Davidovic S Z, Radovanovic N R & Dimitrijevic S I (2017). The use of nanoemulsion-based edible coatings to prolong the shelf-life of cheese. Journal of International Scientific Publications 5: 131-138
  • Mohaisen M J M, Yildirim R M, Yilmaz M T & Durak M Z (2019). Production of functional yogurt drink, apple and orange juice using nano-encapsulated L. brevis within sodium alginate-based biopolymers. Science of Advanced Materials 11: 1788–1797. https://doi.org/10.1166/sam.2019.3708
  • Mohammad Z H, Ahmad F, Ibrahim S A & Zaidi S (2022). Application of nanotechnology in different aspects of the food industry. Discover. Food 2: 12. https://doi.org/10.1007/s44187-022-00013-9
  • Mohammed N K, Muhialdin B J & Hussin A S M (2020). Characterization of nanoemulsion of Nigella sativa oil and its application in ice cream. Food Science and Nutrition 8(6). https://doi.org/10.1002/fsn3.1500
  • Mohammadi R, Mahmoudzadeh M, Atefi M, Khosravi-Darani K & Mozafari M R (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology 68: 11–23. https://doi.org/10.1111/1471-0307.12174
  • Manoj D, Shanmugasundaram S & Anandharamakrishnan C (2021). Nanosensing and nanobiosensing: Concepts, methods, and applications for quality evaluation of liquid foods. Food Control 126: 108017. https://doi.org/10.1016/j.foodcont.2021.108017
  • Montes de Oca-Ávalos J M, Candal R J & Herrera M L (2017). Nanoemulsions: Stability and physical properties. Current Opinion in Food Science 16: 1–19. https://doi.org/10.1016/j.cofs.2017.06.003
  • Maqsoudlou A, Assadpour E, Mohebodini H & Jafari S M (2022). The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition 62: 3208–3231. https://doi.org/10.1080/10408398.2020.1863907
  • Nanda S S, Yi D K & Kim K (2016). Graphene oxide based fluorometric detection of hydrogen peroxide in milk. Journal of Nanoscience and Nanotechnology 16: 1181–1185. https://doi.org/10.1166/jnn.2016.10646
  • Nascimento C F, Santos P M, Pereira-Filho E R & Rocha F R P (2017). Recent advances on determination of milk adulterants. Food Chemistry, 221: 1232-1244. https://doi.org/10.1016/j.foodchem.2016.11.034
  • Nickols-Richardson S M & Piehowski K E (2008). Nanotechnology in nutritional sciences. Minerva Biotecnologica 20: 117–126.
  • Nile S H, Baskar V, Selvaraj D, Nile A, Xiao J & Kai G (2020). Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-Micro Letters, 12, 1-34. https://doi.org/10.1007/s40820-020-0383-9
  • Omerović N, Djisalov M, Živojević K, Mladenović M, Vunduk J, Milenković I, Knežević N Ž, Gadjanski I & Vidić J (2021). Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety 20: 2428–2454. https://doi.org/10.1111/1541-4337.12727
  • Panghal A, Chhikara N, Anshid V, Sai Charan M V, Surendran V, Malik A & Dhull S B (2019). Nanoemulsions: A promising tool for dairy sector. In R Prasad, V Kumar, M Kumar & D Choudhary (Eds.), Nanobiotechnology in Bioformulations (pp. 67-92). Nanotechnology in the Life Sciences. Springer. https://doi.org/10.1007/978-3-030-17061-5_4
  • Pateiro M, Gómez B, Munekata P E S, Barba F J, Putnik P, Kovačević D B & Lorenzo J M (2021). Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules (Basel, Switzerland) 26(6), 1547. https://doi.org/10.3390/molecules26061547
  • Patel D K, Kim H B, Dutta S D, Ganguly K & Lim K T (2020). Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13(7): 1679. https://doi.org/10.3390/ma13071679
  • Pinilla C M & Brandelli A (2016). Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science and Emerging Technologies, 36: 287–293. https://doi.org/10.1016/j.ifset.2016.07.017
  • Pinilla C M, Noreña C P & Brandelli A (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry 220: 470–476. https://doi.org/10.1016/j.foodchem.2016.10.027
  • Pu H, Xu Y, Sun D W, Wei Q & Li X (2021). Optical nanosensors for biofilm detection in the food industry: Principles, applications and challenges. Critical Reviews in Food Science and Nutrition, 61(13): 2107–2124. https://doi.org/10.1080/10408398.2020.1808877
  • Pudtikajorn K, Sae-leaw T & Benjakul S (2021). Characterization of fortified pasteurized cow milk with nanoliposome loaded with skipjack tuna eyeball oil. International Journal of Food Science and Technology 56(12): 5893–5903. https://doi.org/10.1111/ijfs.15196
  • Rashidinejad A, Birch E J, Sun-Waterhouse D & Everett D W (2016). Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food and Bioproducts Processing 100: 238–245. https://doi.org/10.1016/j.fbp.2016.07.005
  • Rasti B, Erfanian A & Selamat J (2017). Novel nanoliposomal encapsulated omega-3 fatty acids and their applications in food. Food Chemistry 230: 690–696. https://doi.org/10.1016/j.foodchem.2017.03.089
  • Rezaei A, Fathi M & Jafari S M (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88: 146–162. https://doi.org/10.1016/j.foodhyd.2018.10.003
  • Rostamabadi H, Assadpour E, Tabarestani H S, Falsafi S R & Jafari S M (2020). Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science & Technology 100: 190–209. https://doi.org/10.1016/j.tifs.2020.04.012
  • Sanabria L A A (2012). Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. Louisiana State University, Master’s Theses 206. Retrieved from https://repository.lsu.edu/gradschool_theses/206
  • Saxena D C & Bhardwaj M (2017). Development of organic and inorganic nanoparticles and their subsequent application in nanocomposites for food and non-food packaging systems. Journal of Nanomedicine and Nanotechnology. https://doi.org/10.4172/2157-7439-C1-052
  • Schmidt S E, Holub G, Sturino J M & Taylor T M (2009). Suppression of Listeria monocytogenes scott a in fluid milk by free and liposome-entrapped nisin. Probiotics and Antimicrobial Proteins 1(2): 152–158. https://doi.org/10.1007/s12602-009-9022-y
  • Senthil M K, Kumar K S, Rajini N, Siengchin S, Ayrilmis N & Varada Rajulu A (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175: 107074. https://doi.org/10.1016/j.compositesb.2019.107074
  • Sharma C, Dhiman R, Rokana N & Panwar H (2017). Nanotechnology: An untapped resource for food packaging. Frontiers in Microbiology, 8: 1735. https://doi.org/10.3389/fmicb.2017.01735
  • Sharma A, Nagarajan J, Gopalakrishnan K, Bodana V, Singh A, Prabhakar P K, Suhag R & Kumar R (2023). Nanotechnology applications and implications in food industry. In R Pudake, N Chauhan & C Kole (Eds.), Nanotechnology Applications for Food Safety and Quality Monitoring (pp. 171–182). https://doi.org/10.1016/B978-0-323-85791-8.00016-1
  • Silva H D, Cerqueira M Â & Vicente A A (2012). Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technology 5(3): 854–867. https://doi.org/10.1007/s11947-011-0683-7
  • Siyar Z, Motamedzadegan A, Milani J M & Rashidinejad A (2022). The effect of the liposomal encapsulated saffron extract on the physicochemical properties of a functional ricotta cheese. Molecules (Basel, Switzerland), 27(1): 120. https://doi.org/10.3390/molecules27010120
  • Song L, Zhang L, Huang Y, Chen L, Zhang G, Shen Z, Zhang J, Xiao Z & Chen T (2017). Amplifying the signal of localized surface plasmon resonance sensing for the sensitive detection of Escherichia coli O157. Scientific Reports, 7: 3288. https://doi.org/10.1038/s41598-017-03495-1
  • Srinivasan V, Chavan S, Jain U & Tarwadi K (2019). Liposomes for nanodelivery systems in food products. In R Pudake, N Chauhan & C Kole (Eds.), Nanoscience for Sustainable Agriculture. Springer. https://doi.org/10.1007/978-3-319-97852-9_24
  • Stasyuk N Y, Gayda G Z, Zakalskiy A E, Fayura L R, Zakalska O M, Sibirny A A, Nisnevitch M & Gonchar M V (2022). Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn (Hg)S nanoparticles. Talanta, 238(Pt 1), 122996. https://doi.org/10.1016/j.talanta.2021.122996
  • Syama M A, Arora S, Gupta C, Sharma A & Sharma V (2019). Enhancement of vitamin D2 stability in fortified milk during light exposure and commercial heat treatments by complexation with milk proteins. Food Bioscience 29: 17–23. https://doi.org/10.1016/j.fbio.2019.03.005
  • Tarhan Ö, Hamaker B R & Campanella O H (2021). Structure and binding ability of self-assembled α-lactalbumin protein nanotubular gels. Biotechnology Progress, 37(3), e3127. https://doi.org/10.1002/btpr.3127
  • Todorov S D, Popov I, Weeks R & Chikindas M L (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods (Basel, Switzerland) 11(9): 3145. https://doi.org/10.3390/foods11193145
  • Wang J, Zhou Y & Jiang L (2021). Bio-inspired track-etched polymeric nanochannels: Steady-StateBiosensors for Detection of Analytes. ACS Nano 15: 18974-19013. https://doi.org/10.1021/acsnano.1c08582
  • Wang Q, Yu W, Li Z, Liu B, Hu Y, Chen S, de Vries R, Yuan Y, Erazo Quintero L E, Hou G, Hu C & Li Y (2022). The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocolloids, 131: 107807. https://doi.org/10.1016/j.foodhyd.2022.107807
  • Wei J N, Zeng X A, Tang T, Jiang Z & Liu Y Y (2018). Unfolding and nanotube formation of ovalbumin induced by pulsed electric field. Innovative Food Science and Emerging Technologies 45: 249–254. https://doi.org/10.1016/j.ifset.2017.10.011
  • Xue J, Wu T, Dai Y & Xia Y (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(9): 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593
  • Vasconcelos H, Matias A, Jorge P, Saraiva C, Mendes J, Araújo J, Dias B, Santos P, Almeida J M M M & Coelho L C C (2021). Optical biosensor for the detection of hydrogen peroxide in milk. Chemistry Proceedings 5: 55. https://doi.org/10.3390/CSAC2021-10466
  • van der Hee R M, Miret S, Slettenaar M, Duchateau G S, Rietveld A G, Wilkinson J E, Quail P J, Berry M J, Dainty J R, Teucher B & Fairweather-Tait S J (2009). Calcium absorption from fortified ice cream formulations compared with calcium absorption from milk. Journal of the American Dietetic Association, 109(5): 830–835. https://doi.org/10.1016/j.jada.2009.02.017
  • Yotova L, Yaneva S & Marinkova D (2013). Biomimetic nanosensors for determination of toxic compounds in food and agricultural products. Journal Chemistry Technology and Metallurgy 48: 215–227
  • Zarrabi A, Alipoor Amro Abadi M, Khorasani S, Mohammadabadi M R, Jamshidi A, Torkaman S, Taghavi E, Mozafari M R & Rasti B (2020). Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules (Basel, Switzerland) 25(3): 638. https://doi.org/10.3390/molecules25030638
  • Zhang Y & Zhong Q (2018). Freeze-dried capsules prepared from emulsions with encapsulated lactase as a potential delivery system to control lactose hydrolysis in milk. Food Chemistry 241: 397–402. https://doi.org/10.1016/j.foodchem.2017.09.004
  • Zhang M, Ahmed A & Xu L (2023). Electrospun Nanofibers for Functional Food Packaging Application. Materials, 16(17): 5937. https://doi.org/10.3390/ma16175937
  • Zhou Y & Kubota L T (2020). Trends in electrochemical sensing. Chem Electro Chem 7: 3684–3685. https://doi.org/10.1002/celc.202001025
There are 107 citations in total.

Details

Primary Language English
Subjects Dairy Technology
Journal Section Makaleler
Authors

Binnur Kaptan 0000-0002-6268-7245

Publication Date January 14, 2025
Submission Date June 26, 2024
Acceptance Date September 25, 2024
Published in Issue Year 2025 Volume: 31 Issue: 1

Cite

APA Kaptan, B. (2025). Nanotechnological Applications in Current Innovative Approaches in Dairy Technology- A review. Journal of Agricultural Sciences, 31(1), 1-11. https://doi.org/10.15832/ankutbd.1505367

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).