Research Article
BibTex RIS Cite

Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye

Year 2025, Volume: 31 Issue: 3, 670 - 689, 29.07.2025
https://doi.org/10.15832/ankutbd.1583278

Abstract

This study investigates the impact of climate factors—temperature, precipitation, and CO2—on the yields of key crops (wheat, potatoes, and rice) in Turkiye, aiming to inform climate-resilient agricultural practices. Using an Autoregressive Distributed Lag (ARDL) approach, the research examines short-run and long-run relationships between crop yields and climate variables from 1981 to 2020. The results indicate that wheat and potatoes cointegrate with climate variables, suggesting a stable long-term relationship. Wheat yields benefit from moderate increases in temperature and CO2 but are sensitive to excess precipitation. Similarly, potatoes are adversely affected by prolonged high temperatures and excessive rainfall, though CO2 shows a delayed positive impact. In contrast, rice yields show no long-run relationship with climate factors, responding instead to short-term variations and having a significant sensitivity to excessive precipitation and high temperatures. These findings underscore the need for crop-specific management strategies to adapt to climate variability, enhancing crop resilience and optimizing yields in Turkiye's diverse agricultural landscape.

References

  • Ainsworth E A & Rogers A (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment 30(3): 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  • Alonso A, Pérez P & Martínez‐Carrasco R (2009). Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiologia Plantarum 135(2): 109-120. https://doi.org/10.1111/j.1399-3054.2008.01177.x
  • Asseng S, Foster, I A N & Turner N C (2011). The impact of temperature variability on wheat yields. Global Change Biology 17(2): 997 1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
  • Bernacchi C J, Ruiz-Vera U M, Siebers M H, DeLucia N J & Ort D R (2023). Short-and long-term warming events on photosynthetic physiology, growth, and yields of field grown crops. Biochemical Journal 480(13): 999-1014. https://doi.org/10.1042/BCJ20220433
  • Bishop K A, Leakey A D & Ainsworth E A (2014). How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food and Energy Security 3(1): 33-45. https://doi.org/10.1002/fes3.44
  • Boretti A & Florentine S (2019). Atmospheric CO2 concentration and other limiting factors in the growth of C3 and C4 plants. Plants 8(4): 92. https://doi.org/10.3390/plants8040092
  • Bozoglu M, Başer U, Eroglu N A & Topuz B K (2019). Impacts of climate change on Turkish agriculture. Journal of International Environmental Application and Science 14(3): 97-103.
  • Busse J S, Wiberley‐Bradford A E & Bethke P C (2019). Transient heat stress during tuber development alters post‐harvest carbohydrate composition and decreases processing quality of chipping potatoes. Journal of the Science of Food and Agriculture 99(5): 2579-2588. https://doi.org/10.1002/jsfa.9473
  • Campbell R, Ducreux L J, Mellado-Ortega E, Hancock R D & Taylor M A (2021). Toward the design of potato tolerant to abiotic stress. Solanum Tuberosum: Methods and Protocols 387-399. https://doi.org/10.1007/978-1-0716-1609-3_19
  • Chandio A A, Gokmenoglu K K & Ahmad F (2021). Addressing the long-and short-run effects of climate change on major food crops production in Turkey. Environmental Science and Pollution Research 28(37): 51657-51673. https://doi.org/10.1007/s11356-021-14358-8
  • Conradie B, Piesse J & Strauss J (2021). Impact of heat and moisture stress on crop productivity: Evidence from the Langgewens Research Farm. South African Journal of Science 117(9-10): 1-7. https://doi.org/10.17159/sajs.2021/8898
  • Conroy J P, Seneweera S, Basra A S, Rogers G & Nissen-Wooller B (1994). Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Functional Plant Biology 21(6): 741-758. https://doi.org/10.1071/PP9940741
  • Donnelly A, Craigon J, Black C R, Colls J J & Landon G (2001). Elevated CO2 increases biomass and tuber yield in potato even at high ozone concentrations. New Phytologist 149(2): 265-274. https://doi.org/10.1046/j.1469-8137.2001.00015.x
  • Du X, Gao Z, Sun X, Bian D, Ren J, Yan P & Cui Y (2022). Increasing temperature during early spring increases winter wheat grain yield by advancing phenology and mitigating leaf senescence. Science of the Total Environment 812: 152557. https://doi.org/10.1016/j.scitotenv.2021.152557
  • Dubey S K, Tripathi S K & Pranuthi G (2015). Effect of elevated CO2 on wheat crop: mechanism and impact. Critical Reviews in Environmental Science and Technology 45(21): 2283-2304. https://doi.org/10.1080/10643389.2014.1000749
  • Fan X, Zhu D, Sun X, Wang J, Wang M, Wang S & Watson A E (2022). Impacts of extreme temperature and precipitation on crops during the growing season in South Asia. Remote Sensing 14(23): 6093. https://doi.org/10.3390/rs14236093
  • Finnan J M, Donnelly A, Jones M B & Burke J I (2005). The effect of elevated levels of carbon dioxide on potato crops: A review. Journal of Crop Improvement 13(1-2): 91-111. https://doi.org/10.1300/J411v13n01_06
  • Gifford R M (1995). Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long‐term vs. ‐term distinctions for modelling. Global Change Biology 1(6): 385-396. https://doi.org/10.1111/j.1365-2486.1995.tb00037.x
  • Gonsamo A, Ciais P, Miralles D G, Sitch S, Dorigo W, Lombardozzi D ... & Cescatti A (2021). Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology 27(14): 3336-3349. https://doi.org/10.1111/gcb.15658
  • Hassler U & Wolters J (2006). Autoregressive distributed lag models and cointegration. Allgemeines Statistisches Archiv 90: 59–74. https://doi.org/10.1007/s10182-006-0221-5
  • Hatfield J L, Boote K J, Kimball B A, Ziska L H, Izaurralde R C, Ort D & Wolfe D (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal 103(2): 351-370. https://doi.org/10.2134/agronj2010.0303
  • Howard J C, Cakan E & Upadhyaya K (2016). Climate change and its impact on wheat production in Kansas. Economics & Business AnalyticsFaculty Publications, University of New Haven. Howell T A (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal 93(2): 281-289. https://doi.org/10.2134/agronj2001.932281x
  • Kaur G, Singh G, Motavalli P P, Nelson K A, Orlowski J M & Golden B R (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal 112(3): 1475-1501. https://doi.org/10.1002/agj2.20093
  • Kaushal N, Bhandari K, Siddique K H & Nayyar H (2016). Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture 2(1): 1134380. https://doi.org/10.1080/23311932.2015.1134380
  • Khaeim H, Kende Z, Balla I, Gyuricza C, Eser A & Tarnawa Á (2022). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability 14(7): 3887. https://doi.org/10.3390/su14073887
  • Kim Y U, Webber H, Adiku S G, Júnior R D S N, Deswarte J C, Asseng S & Ewert F (2024). Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases. Agricultural and Forest Meteorology 344: 109819. https://doi.org/10.1016/j.agrformet.2023.109819
  • King B A, Stark J C & Neibling H (2020). Potato irrigation management (pp. 417-446). Springer International Publishing. Kiongo S C, Taylor N J, Franke A C & Steyn J M (2024). Elevated Carbon Dioxide only Partly Alleviates the Negative Effects of Elevated Temperature on Potato Growth and Tuber Yield. Potato Research 1-21. https://doi.org/10.1007/s11540-024-09767-4
  • Kripfganz S & Schneider D C (2023). ardl: Estimating autoregressive distributed lag and equilibrium correction models. The Stata Journal 23(4): 983-1019. https://doi.org/10.1177/1536867X231212434
  • Kumar S, Sharma A, Pandey S, Paul S, Mishra H, Kesarwani A ... & Tiwari H (2023). Response of Different Moisture Regimes and NitrogenSources on Soil Health, Growth and Yield Attributes of Wheat: A Comprehensive Review. International Journal of Plant & Soil Science 35(20): 541-548. https://doi.org/10.9734/ijpss/2023/v35i203837
  • Lawlor D W & Mitchell R A C (1991). The effects of increasing CO2 on crop photosynthesis and productivity: A review of field studies. Plant, Cell & Environment 14(8): 807-818. https://doi.org/10.1111/j.1365-3040.1991.tb01444.x
  • Lee Y H, Sang W G, Baek J K, Kim J H, Shin P, Seo M C & Cho J I (2020). The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PloS One 15(10): e0241081. https://doi.org/10.1371/journal.pone.0241081
  • Li F, Kang S & Zhang F (2003). Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology 14(3): 387-393.
  • Lizana X C & Calderini D F (2013). Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. The Journal of Agricultural Science 151(2): 209-221. https://doi.org/10.1017/S0021859612000639
  • Lobell D B, Schlenker W & Costa-Roberts J (2012). Climate trends and global crop production since 1980. Science 333(6042): 616-620. https://doi.org/10.1126/science.1204531
  • Long S P, Ainsworth E A, Leakey A D B, Nösberger J & Ort D R (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782): 1918-1921. https://doi.org/10.1126/science.1114722
  • Lopes M S (2022). Will temperature and rainfall changes prevent yield progress in Europe? Food and Energy Security 11(2): e372. https://doi.org/10.1002/fes3.372
  • Loreti E & Striker G G (2020). Plant responses to hypoxia: Signaling and adaptation. Plants 9(12): 1704. https://doi.org/10.3390/plants9121704
  • Makowski D, Marajo-Petitzon E, Durand J L & Ben-Ari T (2020). Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. European Journal of Agronomy 115: 126041. https://doi.org/10.1016/j.eja.2020.126041
  • Meng F C, Guo J, Zhou L, Xiong M M, & Zhang L (2017). Interactive effects of temperature, CO2 concentration and precipitation on growth and yield of crops. The Journal of Applied Ecology 28(12): 4117-4126. https://doi.org/10.13287/j.1001-9332.201712.023
  • Momčilović I (2019). Effects of heat stress on potato productivity and nutritive quality. Hrana i ishrana 60(2): 43-48. https://doi.org/10.5937/hraIsh1902043M
  • Murillo R P, Cáceres J V & Ruiz J L (2021). Dynamics of the Potato Root (Solanum Spp.) Under Different Levels of Soil Moisture, in the Geographical Region of Riobamba, Ecuador. ESPOCH Congresses: The Ecuadorian Journal of STEAM, 294-312. https://doi.org/10.18502/espoch.v1i1.9565
  • Narayan P K (2005). The saving and investment nexus for China: Evidence from cointegration tests. Applied Economics 37(17): 1979-1990. https://doi.org/10.1080/00036840500278103 Ottman M J, Kimball B A, White J W & Wall G W (2012). Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agronomy Journal 104(1): 7-16. https://doi.org/10.2134/agronj2011.0212
  • Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X ... & Cassman K G (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101(27): 9971-9975. https://doi.org/10.1073/pnas.0403720101
  • Pesaran M H & Shin Y (1998). An autoregressive distributed-lag modelling approach to cointegration analysis. In Econometrics and Economic Theory in the Twentieth Century: The Ragner Frisch Centennial Symposium, ed. S. Steiner, 371–413. Cambridge: Cambridge University Press. https://doi.org/10.1017/CCOL521633230.011.
  • Pesaran M H, Shin Y & Smith, R J (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16(3): 289-326. https://doi.org/10.1002/ja
  • Petrova L I, Mitrofanov Y I, Gulyaev M V & Pervushina N K (2021). Influence of various factors on crop formation and potato quality. Ural Agrarian Bulletin 4(207): 34-42. https://doi.org/10.32417/1997-4868-2021-207-04-34-42
  • Seneweera S & Norton R M (2011). Plant responses to increased carbon dioxide. Yadav, Shyam S., Redden, Robert J., Hatfield, Jerry L., Lotze-Campen, Hermann and Hall, Anthony E. (ed.) Crop adaptation to climate change. Chichester, West Sussex. United Kingdom. John Wiley & Sons. pp. 198-217
  • Sharkey T D (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment 28(3): 269-277. https://doi.org/10.1111/j.1365 3040.2005.01324.x
  • Taylor C A & Schlenker W (2021). Environmental drivers of agricultural productivity growth: CO2 fertilization of US field crops (No. w29320). National Bureau of Economic Research.
  • Tiwari A, Prasad S, Jaiswal B, Gyanendra K, Singh S & Singh K N (2017). Effect of heat stress on yield attributing traits in wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. App. Sci 6(12): 2738-2744. https://doi.org/10.20546/ijcmas.2017.612.317
  • Ullah A, Nadeem F, Nawaz A, Siddique K H & Farooq M (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science 208(1): 1-17. https://doi.org/10.1111/jac.12572
  • Van Vuuren M M, Robinson D, Fitter A H, Chasalow S D, Williamson L & Raven J A (1997). Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135(3): 455-465. https://doi.org/10.1046/j.1469-8137.1997.00682.x
  • Vanongeval F & Gobin A (2023). Adverse weather impacts on winter wheat, maize and potato yield gaps in northern Belgium. Agronomy 13(4): 1104. https://doi.org/10.3390/agronomy13041104 Wassmann R, Jagadish S V K, Heuer S, Ismail A, Redona E, Serraj R ... & Rosegrant M (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101: 59-122. https://doi.org/10.1016/S0065-2113(08)00802-X
  • Yandell B. S, Najar A, Wheeler R & Tibbitts T W (1988). Modeling the effects of light, carbon dioxide, and temperature on the growth of potato. Crop Science 28(5): 811-818. https://doi.org/10.2135/cropsci1988.0011183X002800050019x
  • Yang X, Tang X, Chen B, Tian Z & Zhong H (2013). Impacts of heat stress on wheat yield due to climatic warming in China. Prog Geogr 32(12): 1771-1779. https://doi.org/10.1007/s10584-016-1866-z
  • Yu Y, Jiang Z, Wang G, Kattel G R, Chuai X, Shang Y & Miao L (2022). Disintegrating the impact of climate change on maize yield from human management practices in China. Agricultural and Forest Meteorology 327: 109235. https://doi.org/10.1016/j.agrformet.2022.109235
  • Zhang X, Högy P, Wu X, Schmid I, Wang X, Schulze W X & Fangmeier A (2018). Physiological and proteomic evidence for the interactive effects of post‐anthesis heat stress and elevated CO2 on wheat. Proteomics 18(23): 1800262. https://doi.org/10.1002/pmic.201800262
  • Zhao F, Zhang Q, Lei J, Wang H, Zhang K & Qi Y (2024). Environmental factors influence the responsiveness of potato tuber yield to growing season precipitation. Crop and Environment 3(2): 112-122. https://doi.org/10.1016/j.crope.2024.02.002 Zhu T, Fonseca De Lima C F & De Smet I (2021). The heat is on: how crop growth, development, and yield respond to high temperature. Journal of Experimental Botany 72(21): 7359-7373. https://doi.org/10.1093/jxb/erab308

Year 2025, Volume: 31 Issue: 3, 670 - 689, 29.07.2025
https://doi.org/10.15832/ankutbd.1583278

Abstract

References

  • Ainsworth E A & Rogers A (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell & Environment 30(3): 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  • Alonso A, Pérez P & Martínez‐Carrasco R (2009). Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiologia Plantarum 135(2): 109-120. https://doi.org/10.1111/j.1399-3054.2008.01177.x
  • Asseng S, Foster, I A N & Turner N C (2011). The impact of temperature variability on wheat yields. Global Change Biology 17(2): 997 1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
  • Bernacchi C J, Ruiz-Vera U M, Siebers M H, DeLucia N J & Ort D R (2023). Short-and long-term warming events on photosynthetic physiology, growth, and yields of field grown crops. Biochemical Journal 480(13): 999-1014. https://doi.org/10.1042/BCJ20220433
  • Bishop K A, Leakey A D & Ainsworth E A (2014). How seasonal temperature or water inputs affect the relative response of C3 crops to elevated [CO2]: a global analysis of open top chamber and free air CO2 enrichment studies. Food and Energy Security 3(1): 33-45. https://doi.org/10.1002/fes3.44
  • Boretti A & Florentine S (2019). Atmospheric CO2 concentration and other limiting factors in the growth of C3 and C4 plants. Plants 8(4): 92. https://doi.org/10.3390/plants8040092
  • Bozoglu M, Başer U, Eroglu N A & Topuz B K (2019). Impacts of climate change on Turkish agriculture. Journal of International Environmental Application and Science 14(3): 97-103.
  • Busse J S, Wiberley‐Bradford A E & Bethke P C (2019). Transient heat stress during tuber development alters post‐harvest carbohydrate composition and decreases processing quality of chipping potatoes. Journal of the Science of Food and Agriculture 99(5): 2579-2588. https://doi.org/10.1002/jsfa.9473
  • Campbell R, Ducreux L J, Mellado-Ortega E, Hancock R D & Taylor M A (2021). Toward the design of potato tolerant to abiotic stress. Solanum Tuberosum: Methods and Protocols 387-399. https://doi.org/10.1007/978-1-0716-1609-3_19
  • Chandio A A, Gokmenoglu K K & Ahmad F (2021). Addressing the long-and short-run effects of climate change on major food crops production in Turkey. Environmental Science and Pollution Research 28(37): 51657-51673. https://doi.org/10.1007/s11356-021-14358-8
  • Conradie B, Piesse J & Strauss J (2021). Impact of heat and moisture stress on crop productivity: Evidence from the Langgewens Research Farm. South African Journal of Science 117(9-10): 1-7. https://doi.org/10.17159/sajs.2021/8898
  • Conroy J P, Seneweera S, Basra A S, Rogers G & Nissen-Wooller B (1994). Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Functional Plant Biology 21(6): 741-758. https://doi.org/10.1071/PP9940741
  • Donnelly A, Craigon J, Black C R, Colls J J & Landon G (2001). Elevated CO2 increases biomass and tuber yield in potato even at high ozone concentrations. New Phytologist 149(2): 265-274. https://doi.org/10.1046/j.1469-8137.2001.00015.x
  • Du X, Gao Z, Sun X, Bian D, Ren J, Yan P & Cui Y (2022). Increasing temperature during early spring increases winter wheat grain yield by advancing phenology and mitigating leaf senescence. Science of the Total Environment 812: 152557. https://doi.org/10.1016/j.scitotenv.2021.152557
  • Dubey S K, Tripathi S K & Pranuthi G (2015). Effect of elevated CO2 on wheat crop: mechanism and impact. Critical Reviews in Environmental Science and Technology 45(21): 2283-2304. https://doi.org/10.1080/10643389.2014.1000749
  • Fan X, Zhu D, Sun X, Wang J, Wang M, Wang S & Watson A E (2022). Impacts of extreme temperature and precipitation on crops during the growing season in South Asia. Remote Sensing 14(23): 6093. https://doi.org/10.3390/rs14236093
  • Finnan J M, Donnelly A, Jones M B & Burke J I (2005). The effect of elevated levels of carbon dioxide on potato crops: A review. Journal of Crop Improvement 13(1-2): 91-111. https://doi.org/10.1300/J411v13n01_06
  • Gifford R M (1995). Whole plant respiration and photosynthesis of wheat under increased CO2 concentration and temperature: long‐term vs. ‐term distinctions for modelling. Global Change Biology 1(6): 385-396. https://doi.org/10.1111/j.1365-2486.1995.tb00037.x
  • Gonsamo A, Ciais P, Miralles D G, Sitch S, Dorigo W, Lombardozzi D ... & Cescatti A (2021). Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology 27(14): 3336-3349. https://doi.org/10.1111/gcb.15658
  • Hassler U & Wolters J (2006). Autoregressive distributed lag models and cointegration. Allgemeines Statistisches Archiv 90: 59–74. https://doi.org/10.1007/s10182-006-0221-5
  • Hatfield J L, Boote K J, Kimball B A, Ziska L H, Izaurralde R C, Ort D & Wolfe D (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal 103(2): 351-370. https://doi.org/10.2134/agronj2010.0303
  • Howard J C, Cakan E & Upadhyaya K (2016). Climate change and its impact on wheat production in Kansas. Economics & Business AnalyticsFaculty Publications, University of New Haven. Howell T A (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy Journal 93(2): 281-289. https://doi.org/10.2134/agronj2001.932281x
  • Kaur G, Singh G, Motavalli P P, Nelson K A, Orlowski J M & Golden B R (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal 112(3): 1475-1501. https://doi.org/10.1002/agj2.20093
  • Kaushal N, Bhandari K, Siddique K H & Nayyar H (2016). Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture 2(1): 1134380. https://doi.org/10.1080/23311932.2015.1134380
  • Khaeim H, Kende Z, Balla I, Gyuricza C, Eser A & Tarnawa Á (2022). The effect of temperature and water stresses on seed germination and seedling growth of wheat (Triticum aestivum L.). Sustainability 14(7): 3887. https://doi.org/10.3390/su14073887
  • Kim Y U, Webber H, Adiku S G, Júnior R D S N, Deswarte J C, Asseng S & Ewert F (2024). Mechanisms and modelling approaches for excessive rainfall stress on cereals: Waterlogging, submergence, lodging, pests and diseases. Agricultural and Forest Meteorology 344: 109819. https://doi.org/10.1016/j.agrformet.2023.109819
  • King B A, Stark J C & Neibling H (2020). Potato irrigation management (pp. 417-446). Springer International Publishing. Kiongo S C, Taylor N J, Franke A C & Steyn J M (2024). Elevated Carbon Dioxide only Partly Alleviates the Negative Effects of Elevated Temperature on Potato Growth and Tuber Yield. Potato Research 1-21. https://doi.org/10.1007/s11540-024-09767-4
  • Kripfganz S & Schneider D C (2023). ardl: Estimating autoregressive distributed lag and equilibrium correction models. The Stata Journal 23(4): 983-1019. https://doi.org/10.1177/1536867X231212434
  • Kumar S, Sharma A, Pandey S, Paul S, Mishra H, Kesarwani A ... & Tiwari H (2023). Response of Different Moisture Regimes and NitrogenSources on Soil Health, Growth and Yield Attributes of Wheat: A Comprehensive Review. International Journal of Plant & Soil Science 35(20): 541-548. https://doi.org/10.9734/ijpss/2023/v35i203837
  • Lawlor D W & Mitchell R A C (1991). The effects of increasing CO2 on crop photosynthesis and productivity: A review of field studies. Plant, Cell & Environment 14(8): 807-818. https://doi.org/10.1111/j.1365-3040.1991.tb01444.x
  • Lee Y H, Sang W G, Baek J K, Kim J H, Shin P, Seo M C & Cho J I (2020). The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PloS One 15(10): e0241081. https://doi.org/10.1371/journal.pone.0241081
  • Li F, Kang S & Zhang F (2003). Effects of CO2 enrichment, nitrogen and water on photosynthesis, evapotranspiration and water use efficiency of spring wheat. Chinese Journal of Applied Ecology 14(3): 387-393.
  • Lizana X C & Calderini D F (2013). Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. The Journal of Agricultural Science 151(2): 209-221. https://doi.org/10.1017/S0021859612000639
  • Lobell D B, Schlenker W & Costa-Roberts J (2012). Climate trends and global crop production since 1980. Science 333(6042): 616-620. https://doi.org/10.1126/science.1204531
  • Long S P, Ainsworth E A, Leakey A D B, Nösberger J & Ort D R (2006). Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782): 1918-1921. https://doi.org/10.1126/science.1114722
  • Lopes M S (2022). Will temperature and rainfall changes prevent yield progress in Europe? Food and Energy Security 11(2): e372. https://doi.org/10.1002/fes3.372
  • Loreti E & Striker G G (2020). Plant responses to hypoxia: Signaling and adaptation. Plants 9(12): 1704. https://doi.org/10.3390/plants9121704
  • Makowski D, Marajo-Petitzon E, Durand J L & Ben-Ari T (2020). Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. European Journal of Agronomy 115: 126041. https://doi.org/10.1016/j.eja.2020.126041
  • Meng F C, Guo J, Zhou L, Xiong M M, & Zhang L (2017). Interactive effects of temperature, CO2 concentration and precipitation on growth and yield of crops. The Journal of Applied Ecology 28(12): 4117-4126. https://doi.org/10.13287/j.1001-9332.201712.023
  • Momčilović I (2019). Effects of heat stress on potato productivity and nutritive quality. Hrana i ishrana 60(2): 43-48. https://doi.org/10.5937/hraIsh1902043M
  • Murillo R P, Cáceres J V & Ruiz J L (2021). Dynamics of the Potato Root (Solanum Spp.) Under Different Levels of Soil Moisture, in the Geographical Region of Riobamba, Ecuador. ESPOCH Congresses: The Ecuadorian Journal of STEAM, 294-312. https://doi.org/10.18502/espoch.v1i1.9565
  • Narayan P K (2005). The saving and investment nexus for China: Evidence from cointegration tests. Applied Economics 37(17): 1979-1990. https://doi.org/10.1080/00036840500278103 Ottman M J, Kimball B A, White J W & Wall G W (2012). Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agronomy Journal 104(1): 7-16. https://doi.org/10.2134/agronj2011.0212
  • Peng S, Huang J, Sheehy J E, Laza R C, Visperas R M, Zhong X ... & Cassman K G (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences 101(27): 9971-9975. https://doi.org/10.1073/pnas.0403720101
  • Pesaran M H & Shin Y (1998). An autoregressive distributed-lag modelling approach to cointegration analysis. In Econometrics and Economic Theory in the Twentieth Century: The Ragner Frisch Centennial Symposium, ed. S. Steiner, 371–413. Cambridge: Cambridge University Press. https://doi.org/10.1017/CCOL521633230.011.
  • Pesaran M H, Shin Y & Smith, R J (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics 16(3): 289-326. https://doi.org/10.1002/ja
  • Petrova L I, Mitrofanov Y I, Gulyaev M V & Pervushina N K (2021). Influence of various factors on crop formation and potato quality. Ural Agrarian Bulletin 4(207): 34-42. https://doi.org/10.32417/1997-4868-2021-207-04-34-42
  • Seneweera S & Norton R M (2011). Plant responses to increased carbon dioxide. Yadav, Shyam S., Redden, Robert J., Hatfield, Jerry L., Lotze-Campen, Hermann and Hall, Anthony E. (ed.) Crop adaptation to climate change. Chichester, West Sussex. United Kingdom. John Wiley & Sons. pp. 198-217
  • Sharkey T D (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment 28(3): 269-277. https://doi.org/10.1111/j.1365 3040.2005.01324.x
  • Taylor C A & Schlenker W (2021). Environmental drivers of agricultural productivity growth: CO2 fertilization of US field crops (No. w29320). National Bureau of Economic Research.
  • Tiwari A, Prasad S, Jaiswal B, Gyanendra K, Singh S & Singh K N (2017). Effect of heat stress on yield attributing traits in wheat (Triticum aestivum L.). Int. J. Curr. Microbiol. App. Sci 6(12): 2738-2744. https://doi.org/10.20546/ijcmas.2017.612.317
  • Ullah A, Nadeem F, Nawaz A, Siddique K H & Farooq M (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science 208(1): 1-17. https://doi.org/10.1111/jac.12572
  • Van Vuuren M M, Robinson D, Fitter A H, Chasalow S D, Williamson L & Raven J A (1997). Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135(3): 455-465. https://doi.org/10.1046/j.1469-8137.1997.00682.x
  • Vanongeval F & Gobin A (2023). Adverse weather impacts on winter wheat, maize and potato yield gaps in northern Belgium. Agronomy 13(4): 1104. https://doi.org/10.3390/agronomy13041104 Wassmann R, Jagadish S V K, Heuer S, Ismail A, Redona E, Serraj R ... & Rosegrant M (2009). Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies. Advances in Agronomy, 101: 59-122. https://doi.org/10.1016/S0065-2113(08)00802-X
  • Yandell B. S, Najar A, Wheeler R & Tibbitts T W (1988). Modeling the effects of light, carbon dioxide, and temperature on the growth of potato. Crop Science 28(5): 811-818. https://doi.org/10.2135/cropsci1988.0011183X002800050019x
  • Yang X, Tang X, Chen B, Tian Z & Zhong H (2013). Impacts of heat stress on wheat yield due to climatic warming in China. Prog Geogr 32(12): 1771-1779. https://doi.org/10.1007/s10584-016-1866-z
  • Yu Y, Jiang Z, Wang G, Kattel G R, Chuai X, Shang Y & Miao L (2022). Disintegrating the impact of climate change on maize yield from human management practices in China. Agricultural and Forest Meteorology 327: 109235. https://doi.org/10.1016/j.agrformet.2022.109235
  • Zhang X, Högy P, Wu X, Schmid I, Wang X, Schulze W X & Fangmeier A (2018). Physiological and proteomic evidence for the interactive effects of post‐anthesis heat stress and elevated CO2 on wheat. Proteomics 18(23): 1800262. https://doi.org/10.1002/pmic.201800262
  • Zhao F, Zhang Q, Lei J, Wang H, Zhang K & Qi Y (2024). Environmental factors influence the responsiveness of potato tuber yield to growing season precipitation. Crop and Environment 3(2): 112-122. https://doi.org/10.1016/j.crope.2024.02.002 Zhu T, Fonseca De Lima C F & De Smet I (2021). The heat is on: how crop growth, development, and yield respond to high temperature. Journal of Experimental Botany 72(21): 7359-7373. https://doi.org/10.1093/jxb/erab308
There are 58 citations in total.

Details

Primary Language English
Subjects Agricultural Economics
Journal Section Makaleler
Authors

Muhammed Benli 0000-0001-6486-8739

Rabia Özdemir This is me 0009-0000-2683-3850

Publication Date July 29, 2025
Submission Date November 11, 2024
Acceptance Date January 14, 2025
Published in Issue Year 2025 Volume: 31 Issue: 3

Cite

APA Benli, M., & Özdemir, R. (2025). Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye. Journal of Agricultural Sciences, 31(3), 670-689. https://doi.org/10.15832/ankutbd.1583278
AMA Benli M, Özdemir R. Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye. J Agr Sci-Tarim Bili. July 2025;31(3):670-689. doi:10.15832/ankutbd.1583278
Chicago Benli, Muhammed, and Rabia Özdemir. “Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye”. Journal of Agricultural Sciences 31, no. 3 (July 2025): 670-89. https://doi.org/10.15832/ankutbd.1583278.
EndNote Benli M, Özdemir R (July 1, 2025) Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye. Journal of Agricultural Sciences 31 3 670–689.
IEEE M. Benli and R. Özdemir, “Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye”, J Agr Sci-Tarim Bili, vol. 31, no. 3, pp. 670–689, 2025, doi: 10.15832/ankutbd.1583278.
ISNAD Benli, Muhammed - Özdemir, Rabia. “Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye”. Journal of Agricultural Sciences 31/3 (July2025), 670-689. https://doi.org/10.15832/ankutbd.1583278.
JAMA Benli M, Özdemir R. Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye. J Agr Sci-Tarim Bili. 2025;31:670–689.
MLA Benli, Muhammed and Rabia Özdemir. “Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye”. Journal of Agricultural Sciences, vol. 31, no. 3, 2025, pp. 670-89, doi:10.15832/ankutbd.1583278.
Vancouver Benli M, Özdemir R. Balancing Climate Sensitivity and Resilience: Environmental Impacts on Selected Crop Yields in Turkiye. J Agr Sci-Tarim Bili. 2025;31(3):670-89.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).