Research Article
BibTex RIS Cite

Dynnikov Coordinates and 𝝅𝟏–Train Tracks

Year 2019, Volume: 7 Issue: 2, 316 - 323, 25.05.2019
https://doi.org/10.21541/apjes.480959

Abstract

A well known way to coordinatize multicurves on a given surface is to use train tracks. In the case where the surface is the 𝑛–
punctured disk 𝐷𝑛 an alternative and efficient way to coordinatize multicurves is achieved by the Dynnikov coordinate system
which gives an explicit bijection between the set of multicurves on 𝐷𝑛 and ℤ
2𝑛−4
\{0}. In this paper we introduce.

References

  • KAYNAKÇA
  • [1] Artin, E, "Theory of braids ", Ann. of Math., vol 48, no 2, pp. 101–126, 1947.
  • [2] Bestvina, M. and Handel, M. "Train-tracks for surface homeomorphisms", Topology, vol 34, no 1, pp. 109–140, 1995.
  • [3] Dehornoy, P., "Efficient solutions to the braid isotopy problem", Discrete Appl. Math., vol 156, no 16, pp. 3091–3112, 2008.
  • [4] Dehornoy, P., Dynnikov, I., Rolfsen, D. and Wiest, "Ordering braids", Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2008
  • [5] Dynnikov, I., "On a Yang-Baxter mapping and the Dehornoy ordering" Uspekhi Mat. Nauk, vol 57, no 3, pp. 151–152, 2002.
  • [6] Dynnikov, I. and Wiest, B., "On the complexity of braids", J. Eur. Math. Soc. (JEMS), vol 9, no 4, pp. 801–840, 2007.
  • [7] Fathi, A., Laudenbach, F. and Poenaru, V. Travaux de Thurston sur les surfaces, volume 66 of Astérisque. Société Mathématique de France, Paris, Séminaire Orsay, 1979.
  • [8] Finn, M.D. and Thiffeault, J.L. "Topological entropy of braids on the torus", SIAM J. Appl. Dyn. Syst., vol 6, no 1, pp. 79–98. 2007.
  • [9] Gover, P., Ross, S.D., Stremler and M.A., Kumar, P. Topological chaos, braiding and bifurcation of almost cyclic sets. Chaos, 22(4) 16, 2012.
  • [10] Hall, T. and Yurttaş, S.Ö., "On the topological entropy of families of braid", Topology Appl., vol 156, no 8, pp. 1554–1564, 2009.
  • [11] Hamidi-Tehrani, Hessam. and Chen, Zong-He., "Surface diffeomorphisms via train-tracks", Topology Appl., vol 73, no 2, pp. 141–167, 1996
  • [12] Menzel, C., Parker and J. R., "Pseudo-Anosov diffeomorphisms of the twice punctured torus", Recent Advances in Group Theory and Low-Dimensional Topology, vol 27, pp. 141–154, 2003.
  • [13] Moussafir, J., "On computing the entropy of braids", Funct.Anal. OtherMath., vol 1, no 1, pp. 37–-46, 2006.
  • [14] Penner, R. C. and Harer, J. L., Combinatorics of train tracks, Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 125, 1992.
  • [15] Schaefer, M., Sedgwick, and E., Stefankovic, D., "Computing Dehn twists and geometric intersection numbers in polynomial time", Proceedings of the 20th Canadian Conference on Computational Geometry (CCCG2008), 111-114, 2008.
  • [16] Thurston, W.P., "On the geometry and dynamics of diffeomorphisms of surfaces", Bull. Amer. Math. Soc. (N.S.), vol 19, no 2, pp. 417–431, 1988.
  • [17] Yurttaş, S.Ö., Geometric intersection of curves on punctured disks. Journal of the Mathematical Society of Japan, vol 65, no 4, pp. 1554–1564, 2013.
  • [18] Yurttaş, S.Ö. "Dynnikov and train track transition matrices of pseudo-Anosov braids ", Discrete Contin. Dyn. Syst., vol 36, no 1, pp. 541–570, 2016.
  • [19] Yurttaş, S.Ö. and Hall, T., "Counting components of an integral lamination", Manuscripta Math., vol 153, no 1, pp. 263–278, 2017.
  • [20] Yurttaş, S.Ö. and Hall, T., "Intersections of multicurves from Dynnikov coordinates", Bull. Aust. Math. Soc. vol 98, no 1, pp. 149–158, 2018.

Dynnikov Koordinatları ve 𝝅𝟏–Train Track Grafikleri

Year 2019, Volume: 7 Issue: 2, 316 - 323, 25.05.2019
https://doi.org/10.21541/apjes.480959

Abstract

Verilen bir yüzeyde tanımlı
çoklu eğrileri koordinatlandırmanın alışılmış bir yolu train track grafiklerini
kullanmaktır. Yüzeyin sonlu noktası çıkarılmış
𝐷𝑛 diski olması durumunda ise çoklu eğrilerin
kümesi ile
2𝑛−4 \{0} arasında birebir ve örten bir dönüşüm
veren Dynnikov koordinat sistemi çoklu eğrileri koordinatlandırmak için
alternatif ve etkili bir yol sunar. Bu çalışmada,
𝐷𝑛’ de verilen bir çoklu eğrinin belirli tipten bir
train track grafiği olan
𝜋1–train track grafiği koordinatlarını Dynnikov koordinatlarına bağlayan
geçiş formülleri sunulmuştur. 

References

  • KAYNAKÇA
  • [1] Artin, E, "Theory of braids ", Ann. of Math., vol 48, no 2, pp. 101–126, 1947.
  • [2] Bestvina, M. and Handel, M. "Train-tracks for surface homeomorphisms", Topology, vol 34, no 1, pp. 109–140, 1995.
  • [3] Dehornoy, P., "Efficient solutions to the braid isotopy problem", Discrete Appl. Math., vol 156, no 16, pp. 3091–3112, 2008.
  • [4] Dehornoy, P., Dynnikov, I., Rolfsen, D. and Wiest, "Ordering braids", Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2008
  • [5] Dynnikov, I., "On a Yang-Baxter mapping and the Dehornoy ordering" Uspekhi Mat. Nauk, vol 57, no 3, pp. 151–152, 2002.
  • [6] Dynnikov, I. and Wiest, B., "On the complexity of braids", J. Eur. Math. Soc. (JEMS), vol 9, no 4, pp. 801–840, 2007.
  • [7] Fathi, A., Laudenbach, F. and Poenaru, V. Travaux de Thurston sur les surfaces, volume 66 of Astérisque. Société Mathématique de France, Paris, Séminaire Orsay, 1979.
  • [8] Finn, M.D. and Thiffeault, J.L. "Topological entropy of braids on the torus", SIAM J. Appl. Dyn. Syst., vol 6, no 1, pp. 79–98. 2007.
  • [9] Gover, P., Ross, S.D., Stremler and M.A., Kumar, P. Topological chaos, braiding and bifurcation of almost cyclic sets. Chaos, 22(4) 16, 2012.
  • [10] Hall, T. and Yurttaş, S.Ö., "On the topological entropy of families of braid", Topology Appl., vol 156, no 8, pp. 1554–1564, 2009.
  • [11] Hamidi-Tehrani, Hessam. and Chen, Zong-He., "Surface diffeomorphisms via train-tracks", Topology Appl., vol 73, no 2, pp. 141–167, 1996
  • [12] Menzel, C., Parker and J. R., "Pseudo-Anosov diffeomorphisms of the twice punctured torus", Recent Advances in Group Theory and Low-Dimensional Topology, vol 27, pp. 141–154, 2003.
  • [13] Moussafir, J., "On computing the entropy of braids", Funct.Anal. OtherMath., vol 1, no 1, pp. 37–-46, 2006.
  • [14] Penner, R. C. and Harer, J. L., Combinatorics of train tracks, Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 125, 1992.
  • [15] Schaefer, M., Sedgwick, and E., Stefankovic, D., "Computing Dehn twists and geometric intersection numbers in polynomial time", Proceedings of the 20th Canadian Conference on Computational Geometry (CCCG2008), 111-114, 2008.
  • [16] Thurston, W.P., "On the geometry and dynamics of diffeomorphisms of surfaces", Bull. Amer. Math. Soc. (N.S.), vol 19, no 2, pp. 417–431, 1988.
  • [17] Yurttaş, S.Ö., Geometric intersection of curves on punctured disks. Journal of the Mathematical Society of Japan, vol 65, no 4, pp. 1554–1564, 2013.
  • [18] Yurttaş, S.Ö. "Dynnikov and train track transition matrices of pseudo-Anosov braids ", Discrete Contin. Dyn. Syst., vol 36, no 1, pp. 541–570, 2016.
  • [19] Yurttaş, S.Ö. and Hall, T., "Counting components of an integral lamination", Manuscripta Math., vol 153, no 1, pp. 263–278, 2017.
  • [20] Yurttaş, S.Ö. and Hall, T., "Intersections of multicurves from Dynnikov coordinates", Bull. Aust. Math. Soc. vol 98, no 1, pp. 149–158, 2018.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Saadet Öykü Yurttas 0000-0002-0262-1914

Umut Gungorur This is me 0000-0001-5991-4956

Publication Date May 25, 2019
Submission Date November 9, 2018
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

IEEE S. Ö. Yurttas and U. Gungorur, “Dynnikov Koordinatları ve 𝝅𝟏–Train Track Grafikleri”, APJES, vol. 7, no. 2, pp. 316–323, 2019, doi: 10.21541/apjes.480959.