Review Article
BibTex RIS Cite

Time series analysis from 1984 to 2023 of Earth Observation Satellites data for evaluating changes in vegetation cover and health at flaring sites in the Niger Delta, Nigeria

Year 2024, , 76 - 100, 30.12.2024
https://doi.org/10.52114/apjhad.1557231

Abstract

Normalized Difference Vegetation Index (NDVI) is the most popular vegetation index used to clarify the difficulties of multi-spectral imagery, for example evaluation of vegetation.The data (11 Landsat 5 TM, 49 Landsat 7 ETM+, 27 Landsat 8 OLI-TIRS, and 15Landsat 9 OLI-TIRS)dated from 10/10/1984 to 17/12/2023 with < 3 % cloud cover wereused to study 11 flaring sites in Rivers State, Nigeria. Data processing and analysis were carried out using MATLAB codes. NDVI For Landsat 5 and Landsat 7, NDVI was determined from the atmospherically corrected multispectral bands (1-4) and for Landsat 8 and Landsat 9 are bands (2-5) in the N, E, S and W directions at distances 60 m, 90 m, 120 m and 240 m respectively from the flare. Generally, the results show that the NDVI at 60 m are the lowest. NDVI increases as distance increases to 90 m, 120 m and 240m from the flare for all the 11 sites. NDVI for all sites decreases as each year passes away however, Onne Flow Station gives an unsteady pattern for the years 1984 to 2007 before the flow station was built. The lowest mean NDVI (0.290) obtained from all the 11 sites is recorded at Umudioga 60 m East from the flare stack, followed by Obigbo with (0.300) at 60 m East from the flare. SD for each site is small with a range value (5.0786 ×10-5- 2.0689 × 10-4). Therefore, it can be concluded that Landsat sensors can be used to evaluate the changes in vegetation cover and its health at the flaring sites in the Niger Delta.

Ethical Statement

The author declare no conflict of interest

Thanks

Author is grateful to the Editor for the opportunity to submit this article for publication.

References

  • [1] Lu, W., Liu, Y., Wang, J., Xu, W., Wu, W., Liu, Y., Zhao, B., Li, H., & Pei Li. “Global proliferation of offshore gas flaring areas”. Journal of Maps, 16(2), 396-404, 2020. DOI: 10.1080/17445647.2020.1762773
  • [2] Morakinyo, B. O., Lavender, S., Schwarz, J & Abbott, V.. “Mapping of land cover and estimation of their emissivity values for gas flaring sites in the Niger Delta”. British Journal of Environmental Sciences, 7(2), 31-58, 2019.
  • [3] Morakinyo, B. O., Lavender, S & Abbott, V.. “Detection of potentially gas flaring related pollution on vegetation cover and its health using remotely sensed data in the Niger Delta, Nigeria”. Asian Review of Environmental and Earth Sciences, 10(1), 1-13, 2023a. https://doi.org/10.20448/arees.v10i1.4407
  • [4] Morakinyo, B. O.. “Assessments of the impacts of environmental factors on vegetation cover at gas flaring sites in the Niger Delta, Nigeria”. Review of Environment and Earth Sciences, 10(1), 8-18, 2023b.
  • [5] Umbugala, U. D & Morakinyo, B. O.. “Detection of Oil and Gas Platforms in the Niger Delta, Nigeria: Role of Digital Technology in Facilities Management”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 2(2), 11-22, 2023.
  • [6] Morakinyo, B. O.. “Flaring and pollution detection in the Niger Delta using remote sensing”. PhD Thesis, University of Plymouth, Plymouth, United Kingdom. 2015.
  • [7] Morakinyo, B. O., Lavender, S &Abbott, V.. “Investigation of potential prevailing wind impact on land surface temperature at gas flaring sites in the Niger Delta, Nigeria”. International Journal of Environment and Geoinformatics, 9(1), 179-190, 2022a. https://doi.org/10.30897/ijegeo.968687
  • [8] Morakinyo, B. O., Lavender, S & Abbott, V.. “Evaluation of factors influencing changes in land surface temperature at gas flaring sites in the Niger Delta, Nigeria”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 1(2), 1-19, 2022b.
  • [9] Nwaogu, L. A & Onyeze, G. O. C.. “Environmental Impacts of Gas Flaring on Ebocha-Egbema, Niger Delta, Nigeria”. Energy and Environmental Research, 8(1), 1-11, 2020.
  • [10] Morakinyo, B. O.. “Detection of Impacts of Gas Flaring in the Environment: Application of Landsat Earth Observation Data”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 2(1), 74-89, 2023c.
  • [11] Morakinyo, B. O., Lavender, S & Abbott, V.. “The methodology and results from ground validation of satellite observations at gas Flaring Sites in Nigeria”. International Journal of Environment and Geoinformatics, 8(3), 290-300, 2021. https://doi.org/10.30897/ijegeo.749664
  • [12] Morakinyo, B. O., Lavender, S & Abbott, V.. “Assessment of uncertainties in the computation of atmospheric correction parameters for Landsat 5 TM and Landsat 7 ETM+ thermal band from atmospheric correction parameter (ATMCORR calculator)”. British Journal of Environmental Sciences, 8(1), 20-30, 2020a.
  • [13] Morakinyo, B. O., Lavender, S & Abbott, V.. “Retrieval of land surface temperature from Earth observation satellites for gas flaring sites in the Niger Delta, Nigeria”. International Journal of Environmental Monitoring and Analysis. 8(3), 59-74, 2020b. https://doi.org/10.11648/j.ijema.20200803.13
  • [14] Musa, D. G., Oruonye, E. D., Anger, R. T., Ojeh, V. N & Delphine, D.. “Effect of Gas Flaring on Human Well-Being and Environment in Obodo-Ugwa, Ndokwa West, Local Government Area, Delta State, Nigeria”. Journal of Engineering & Environmental Science 2024, 2(1): 000108), 2024.
  • [15] Huang, S., Tang, L., Hupy, P., Wang, Y & Shao, G.. “A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing”. Journal of Forestry Research 32(1), 1-6, 2020. https://doi.org/10.1007/s11676-020-01155-1
  • [16] Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y & Zhang, J.. “Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015”. Scientific Reports,9:16865, 2019. https://doi.org/10.1038/s41598-019-53150-0
  • [17] Hua, X., Rena, H., Tansey, K., Zhenga, Y., Ghent, D., Liu, X & Yan, L.. “Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries”. Agricultural and Forest Meteorology, 279, 107707, 2019.
  • [18] Wei., W., Zhang, H., Zhou, J., Zhou, L., Xie, B. & Li, C.. “Drought monitoring in arid and semi-arid region based on multi-satellite datasets in Northwest China”. Environmental Science and Pollution Research, vol. 28, pages 51556-51574, 2021.
  • [19] Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N & Goldberg, A.. “Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations”. Journal of Climate, 23: 618-633, 2010.
  • [20] Polat, A. B., Akcay, O & Kontas, F.. “Drought monitoring in Burdur Lake, Turkey using multi-sensor remote sensing data sets”. Advances in Geodesy and Geoinformation (formerly Geodesy and Cartography), Vol. 73, no. 1, article no. e47, 2024. https://doi.org/10.24425/agg.2023.146159
  • [21] Gessner, U.; Reinermann, S., Asam, S & Kuenzer, C.. “Vegetation Stress Monitor-Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years”. Remote Sensing, 15, 5428, 2023. https://doi.org/10.3390/rs15225428
  • [22] Kloos, S., Yuan, Y., Castelli, M & Menzel, A.. “Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany”. Remote Sensing, 13, 3907, 2021. https://doi.org/10.3390/rs13193907
  • [23] Chang, J., Liu, Q., Wang, S & Huang, C. “Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019”. Remote Sensing, 14, 3390, 2022. https://doi.org/10.3390/rs14143390
  • [24] Chrysopolitou, V., Apostolakis, A., Avtzis, D., Avtzis, N., Diamandis, S., Kemitzoglou, D., Papadimos, D., Perlerou, C., Tsiaoussi, V & Dafis, S.. “Studies on forest health and vegetation changes in Greece under the effects of climate changes”. Biodiversity Conservation, 22:1133-1150, 2013. DOI 10.1007/s10531-013-0451-2.
  • [25] Lavender, S. J.. “Monitoring land cover dynamics at varying spatial scales using high to very high resolution optical imagery”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic.
  • [26] Jiang, L., Liu, Y., Wu, S & Yang, C.. “Analyzing ecological environment change and associated driving factors in China based on NDVI time series data”. Ecological Indicators, 129, 107933, 2021.
  • [27] Hu, Y., Raza, A., Syed, N. R., Acharki, S., Ray, R. L., Hussain, S., Dehghanisanij, H., Zubair, M & Elbeltagi, A.. “Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province”. Sustainability, 15, 3572, 2023. https://doi.org/10.3390/su15043572
  • [28] Guha, S.. “A long-term monthly assessment of land surface temperature and normalized difference vegetation index using Landsat data”. urbe. Revista Brasileira de Gestão Urbana, v.13, e20200345, 2021. https://doi.org/10.1590/2175-3369.013.e20200345
  • [29] Guha, S., Govil, H & Diwan, P.. “Monitoring LST-NDVI Relationship Using Premonsoon Landsat Datasets”. Advances in Meteorology, Volume 2020, Article ID 4539684, 15 pages, 2020. https://doi.org/10.1155/2020/4539684
  • [30] Roßberg, T & Schmitt, M.. “A Globally Applicable Method for NDVI Estimation from Sentinel‑1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset”. PFG, 91: 171-188, 2023.
  • [31] Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J & Stenseth, N. C.. “Using the satellite-derived NDVI to assess ecological responses to environmental change”. Trends of Ecological Evolution, 20(9), 503-510, 2005.
  • [32] Tian, J., Wang, L., Li, X., Gong, H., Shi, C., Zhong, R & Liu, X.. “Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest”. International Journal of Applied Earth Observation and Geoinformatics, 61, 22-31, 2017.
  • [33] Pastor-Guzman, J., Atkinson, P., Dash, J & Rioja-Nieto, R.. “Spatio-temporal variation in mangrove chlorophyll concentration using Landsat 8”. Remote Sensing of Environment, 7(11), 14530-14558, 2015.
  • [34] Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., Gazol, A., Azorin-Molina, C., Bhuyan, U & El-Kenawy, A.. “Diverse relationships between forest growth and the normalized difference vegetation index at a global scale”. Remote Sensing of Environment, 187, 14-29, 2016.
  • [35] Chavez, R. O., Clevers, J. G. P. W., Decuyper, M., De Bruin, S & Herold, M.. “50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)?”. Journal of Arid Environment, 124, 292-303, 2016.
  • [36] Butt, B.. “Environmental indicators and governance”. Current Opinion on Environmental Sustainability 32, 84-89, 2018.
  • [37] Grant, B. G.. “UAV imagery analysis: Challenges and opportunities. In: Proceedings of the long-range imaging II”. Anaheim, CA, vol 10204, p 1020406, 2017.
  • [38] Jones, H. G & Vaughan, R. A.. “Remote sensing of vegetation: Principles, techniques and applications”. Oxford University Press, New York, p 353, 2010.
  • [39] Chu, H. S., Venevsky, S., Wu, C & Wang, M. H.. “NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015”. Sci. Total Environ. 650, 2051-2062, 2019. https://doi.org/10.1016/j. scitotenv.2018.09.115
  • [40] Mao, D., Wang, Z., Luo, L & Ren, C.. “Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China”. International Journal of Applied Earth Observation and Geoinformatics, 18, 528-536, 2012. https://doi.org/10.1016/j. jag.2011.10.007
  • [41] Zhao, J., Huang, S., Huang, Q., Wang, H., Leng, G & Fang, W.. “Time-lagged response of vegetation dynamics to climatic and teleconnection factors”. Catena, 189, 104474, 2020. https://doi.org/10.1016/j.catena.104474
  • [42] Buyantuyev, A & Wu, J.. “Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA”. Landscape Urban Plan, 105 (1-2), 149-159, 2012. https://doi.org/10.1016/j.landurbplan.2011.12.013
  • [43] Olujobi, O. J.. “Analysis of the Legal Framework Governing Gas Flaring in Nigeria’s Upstream Petroleum Sector and the Need for Overhauling”. Social Science,9, 132, 2020.
  • [44] Aigbe, G. O., Cotton, M & Stringer, L. C.. “Global gas flaring and energy justice: An empirical ethics analysis of stakeholder perspectives”. Energy Research & Social Science 99, 103064, 2023.
  • [45] Olujobi, O. J., Yebisi, T. E., Patrick, O. P & Ariremako, A. I.. “The Legal Framework for Combating Gas Flaring in Nigeria’s Oil and Gas Industry: Can It Promote Sustainable Energy Security?”. Sustainability, 14, 7626, 2022. https://doi.org/10.3390/su1413762.
  • [46] Alola, A. A., Onifade, S. T., Magazzino, C & Obekpa, H. O.. “The effects of gas flaring as moderated by government quality in leading natural gas flaring economies”. Scientific Reports,13: 14394, 2023. https://doi.org/10.1038/s41598-023-38032-w.
  • [47] Sandunika, D.M.I., Dilka, S.H.S., Alwis, M.K.S.D., Siriwardhana, S.M.G.T., M. S, N., Perera, W.A.V.T., Sandeepa, R.A.H.T., Panagoda, L.P.S.S., Chamara, N.N., & Kumarasiri, K.A.C.S.. “Assessing the effectiveness and sustainability of carbon capture and storage (ccs) technologies for mitigating greenhouse gas emissions”. 2020.
  • [48] Thepsaskul, W., Wongsapai, W., Sirisrisakulchai, J., Jaitiang, T., Daroon, S., Raksakulkan, V., Muangjai, P., Ritkrerkkrai, C., Suttakul, P., & Wattakawigran, G.. “Potential business models of carbon capture and storage (CCS) for the oil refining industry in Thailand”. Energies, 16(19), p.6955, 2023.
  • [49] Ekemezie, I. O & Digitemie, W. N,. “Climate change mitigation strategies in the oil and gas sector. A review of practices and impact”. Engineering Science & Technology Journal, Volume 5, Issue 3, 935-948, 2024.
  • [50] Van Oort, E., Chen, D., Ashok, P., & Fallah, A.. “Constructing deep closed-loop geothermal wells for globally scalable energy production by leveraging oil and gas ERD and HPHT well construction expertise”. In SPE/IADC Drilling Conference and Exhibition (p. D021S002R001). SPE. 2021, March.
  • [51] Lyons, W. C., Stanley, J. H., Sinisterra, F. J., & Weller, T.. “Air and Gas Drilling Manual: Applications for Oil, Gas, Geothermal Fluid Recovery Wells, Specialized Construction Boreholes, and the History and Advent of the Directional DTH”. Gulf Professional Publishing. 2020.
  • [52] Elvidge, C. D., Bazilian, M. D., Zhizhin, M., Ghosh, T., Baugh, K & Hsu, F. (2018). The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Reviews 20 (2018) 156-162.
  • [53] Zolfaghari, M., Pirouzfar, V and Sakhaeinia, H.. “Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants”. Energy 124481-491, 2017.
  • [54] ESRI.. “Map of Nigeria, map of Rivers State and map of 11 gas flaring studied sites”. 2024.
  • [55] Chander, G & Markham, K.. “Revised Landsat 5 TM Radiometric Calibration Procedures and Post Calibration Ranges”. IEEE Transaction of Geosciences and Remote Sensing 41(11): 2674-2677, 2003.
  • [56] NASA.. “National Aeronautics and Space Administration. Landsat 7 ETM+ Science Data Users Handbook”. [Online]. Available: http://www.landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html [Accessed 23rd January 2022].
  • [57] Ihlen, V.. “Landsat 8 (L8) Data Users Handbook”, Version 5.0. Department of the Interior, U.S. Geological Survey. 2019.
  • [58] Markham, B. L &Barker, J. L.. “Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperature”. EOSAT Landsat Technical Notes: 3-8, 1986.
  • [59] Lavender, S. J.. “Monitoring land cover dynamics at varying spatial scales using high to very high resolution optical imagery”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic.
  • [60] Liang, S., Fang, H &Chen, M.. “Atmospheric Correction of Landsat ETM+ Land Surface Imagery - Part I: Methods”. IEEE Transactions on Geoscience and Remote Sensing 39(11): 2490-2498, 2001.
  • [61] Chavez, P. S.. “Image-based Atmospheric Corrections-Revisited and Improved”. Photogrammetry Engineering and Remote Sensing 62(9): 1025-1036, 1996.
  • [62] Santer, R., Carrere, V., Dubuisson, P & Roger, J. C.. “Atmospheric correction over land for MERIS”. International Journal of Remote Sensing 20: 1819-1840, 1999.
  • [63] Şatır, O & Berberoğlu, S. (2012). Land Use/Cover Classification Techniques Using Optical Remotely Sensed Data in Landscape Planning, Landscape Planning, Dr. Murat Ozyavuz (Ed.), ISBN: 978-953-51-0654-8, InTech. [Online]. Available: http://www.intechopen.com/books/landscape-planning/land-use-cover-classificationtechniques-using-optical-remotely-sensed-data-in-landscape-plannin [Accessed 15th May 2023]
  • [64] Maaharjan, A.. “Land use/land cover of Katrimandu valley by using Remote Sensing and GIS. M.Sc. Dissertation submitted to Central Department of Environmental Sciences”, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. 2018.
  • [65] Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X & Ferreira, L.G.. “Overview of the radiometric and biophysical performance of the MODIS vegetation indices”. Remote Sensing of Environment, 83 (1-2), 195-213, 2002. https://doi.org/10.1016/S0034-4257(02) 00096-2
  • [66] Goward, S. N., Tucker, C. J. &Dye, D. G.. “North American vegetation patterns observed with the NOAA-7 Advanced Very High-Resolution Radiometer”. Vegetation, 64, 3-14, 1985.
Year 2024, , 76 - 100, 30.12.2024
https://doi.org/10.52114/apjhad.1557231

Abstract

References

  • [1] Lu, W., Liu, Y., Wang, J., Xu, W., Wu, W., Liu, Y., Zhao, B., Li, H., & Pei Li. “Global proliferation of offshore gas flaring areas”. Journal of Maps, 16(2), 396-404, 2020. DOI: 10.1080/17445647.2020.1762773
  • [2] Morakinyo, B. O., Lavender, S., Schwarz, J & Abbott, V.. “Mapping of land cover and estimation of their emissivity values for gas flaring sites in the Niger Delta”. British Journal of Environmental Sciences, 7(2), 31-58, 2019.
  • [3] Morakinyo, B. O., Lavender, S & Abbott, V.. “Detection of potentially gas flaring related pollution on vegetation cover and its health using remotely sensed data in the Niger Delta, Nigeria”. Asian Review of Environmental and Earth Sciences, 10(1), 1-13, 2023a. https://doi.org/10.20448/arees.v10i1.4407
  • [4] Morakinyo, B. O.. “Assessments of the impacts of environmental factors on vegetation cover at gas flaring sites in the Niger Delta, Nigeria”. Review of Environment and Earth Sciences, 10(1), 8-18, 2023b.
  • [5] Umbugala, U. D & Morakinyo, B. O.. “Detection of Oil and Gas Platforms in the Niger Delta, Nigeria: Role of Digital Technology in Facilities Management”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 2(2), 11-22, 2023.
  • [6] Morakinyo, B. O.. “Flaring and pollution detection in the Niger Delta using remote sensing”. PhD Thesis, University of Plymouth, Plymouth, United Kingdom. 2015.
  • [7] Morakinyo, B. O., Lavender, S &Abbott, V.. “Investigation of potential prevailing wind impact on land surface temperature at gas flaring sites in the Niger Delta, Nigeria”. International Journal of Environment and Geoinformatics, 9(1), 179-190, 2022a. https://doi.org/10.30897/ijegeo.968687
  • [8] Morakinyo, B. O., Lavender, S & Abbott, V.. “Evaluation of factors influencing changes in land surface temperature at gas flaring sites in the Niger Delta, Nigeria”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 1(2), 1-19, 2022b.
  • [9] Nwaogu, L. A & Onyeze, G. O. C.. “Environmental Impacts of Gas Flaring on Ebocha-Egbema, Niger Delta, Nigeria”. Energy and Environmental Research, 8(1), 1-11, 2020.
  • [10] Morakinyo, B. O.. “Detection of Impacts of Gas Flaring in the Environment: Application of Landsat Earth Observation Data”. BAZE University Journal of Entrepreneurship and Interdisciplinary Studies, 2(1), 74-89, 2023c.
  • [11] Morakinyo, B. O., Lavender, S & Abbott, V.. “The methodology and results from ground validation of satellite observations at gas Flaring Sites in Nigeria”. International Journal of Environment and Geoinformatics, 8(3), 290-300, 2021. https://doi.org/10.30897/ijegeo.749664
  • [12] Morakinyo, B. O., Lavender, S & Abbott, V.. “Assessment of uncertainties in the computation of atmospheric correction parameters for Landsat 5 TM and Landsat 7 ETM+ thermal band from atmospheric correction parameter (ATMCORR calculator)”. British Journal of Environmental Sciences, 8(1), 20-30, 2020a.
  • [13] Morakinyo, B. O., Lavender, S & Abbott, V.. “Retrieval of land surface temperature from Earth observation satellites for gas flaring sites in the Niger Delta, Nigeria”. International Journal of Environmental Monitoring and Analysis. 8(3), 59-74, 2020b. https://doi.org/10.11648/j.ijema.20200803.13
  • [14] Musa, D. G., Oruonye, E. D., Anger, R. T., Ojeh, V. N & Delphine, D.. “Effect of Gas Flaring on Human Well-Being and Environment in Obodo-Ugwa, Ndokwa West, Local Government Area, Delta State, Nigeria”. Journal of Engineering & Environmental Science 2024, 2(1): 000108), 2024.
  • [15] Huang, S., Tang, L., Hupy, P., Wang, Y & Shao, G.. “A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing”. Journal of Forestry Research 32(1), 1-6, 2020. https://doi.org/10.1007/s11676-020-01155-1
  • [16] Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y & Zhang, J.. “Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015”. Scientific Reports,9:16865, 2019. https://doi.org/10.1038/s41598-019-53150-0
  • [17] Hua, X., Rena, H., Tansey, K., Zhenga, Y., Ghent, D., Liu, X & Yan, L.. “Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries”. Agricultural and Forest Meteorology, 279, 107707, 2019.
  • [18] Wei., W., Zhang, H., Zhou, J., Zhou, L., Xie, B. & Li, C.. “Drought monitoring in arid and semi-arid region based on multi-satellite datasets in Northwest China”. Environmental Science and Pollution Research, vol. 28, pages 51556-51574, 2021.
  • [19] Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G., Panov, N & Goldberg, A.. “Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations”. Journal of Climate, 23: 618-633, 2010.
  • [20] Polat, A. B., Akcay, O & Kontas, F.. “Drought monitoring in Burdur Lake, Turkey using multi-sensor remote sensing data sets”. Advances in Geodesy and Geoinformation (formerly Geodesy and Cartography), Vol. 73, no. 1, article no. e47, 2024. https://doi.org/10.24425/agg.2023.146159
  • [21] Gessner, U.; Reinermann, S., Asam, S & Kuenzer, C.. “Vegetation Stress Monitor-Assessment of Drought and Temperature-Related Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years”. Remote Sensing, 15, 5428, 2023. https://doi.org/10.3390/rs15225428
  • [22] Kloos, S., Yuan, Y., Castelli, M & Menzel, A.. “Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany”. Remote Sensing, 13, 3907, 2021. https://doi.org/10.3390/rs13193907
  • [23] Chang, J., Liu, Q., Wang, S & Huang, C. “Vegetation Dynamics and Their Influencing Factors in China from 1998 to 2019”. Remote Sensing, 14, 3390, 2022. https://doi.org/10.3390/rs14143390
  • [24] Chrysopolitou, V., Apostolakis, A., Avtzis, D., Avtzis, N., Diamandis, S., Kemitzoglou, D., Papadimos, D., Perlerou, C., Tsiaoussi, V & Dafis, S.. “Studies on forest health and vegetation changes in Greece under the effects of climate changes”. Biodiversity Conservation, 22:1133-1150, 2013. DOI 10.1007/s10531-013-0451-2.
  • [25] Lavender, S. J.. “Monitoring land cover dynamics at varying spatial scales using high to very high resolution optical imagery”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic.
  • [26] Jiang, L., Liu, Y., Wu, S & Yang, C.. “Analyzing ecological environment change and associated driving factors in China based on NDVI time series data”. Ecological Indicators, 129, 107933, 2021.
  • [27] Hu, Y., Raza, A., Syed, N. R., Acharki, S., Ray, R. L., Hussain, S., Dehghanisanij, H., Zubair, M & Elbeltagi, A.. “Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province”. Sustainability, 15, 3572, 2023. https://doi.org/10.3390/su15043572
  • [28] Guha, S.. “A long-term monthly assessment of land surface temperature and normalized difference vegetation index using Landsat data”. urbe. Revista Brasileira de Gestão Urbana, v.13, e20200345, 2021. https://doi.org/10.1590/2175-3369.013.e20200345
  • [29] Guha, S., Govil, H & Diwan, P.. “Monitoring LST-NDVI Relationship Using Premonsoon Landsat Datasets”. Advances in Meteorology, Volume 2020, Article ID 4539684, 15 pages, 2020. https://doi.org/10.1155/2020/4539684
  • [30] Roßberg, T & Schmitt, M.. “A Globally Applicable Method for NDVI Estimation from Sentinel‑1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset”. PFG, 91: 171-188, 2023.
  • [31] Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J & Stenseth, N. C.. “Using the satellite-derived NDVI to assess ecological responses to environmental change”. Trends of Ecological Evolution, 20(9), 503-510, 2005.
  • [32] Tian, J., Wang, L., Li, X., Gong, H., Shi, C., Zhong, R & Liu, X.. “Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest”. International Journal of Applied Earth Observation and Geoinformatics, 61, 22-31, 2017.
  • [33] Pastor-Guzman, J., Atkinson, P., Dash, J & Rioja-Nieto, R.. “Spatio-temporal variation in mangrove chlorophyll concentration using Landsat 8”. Remote Sensing of Environment, 7(11), 14530-14558, 2015.
  • [34] Vicente-Serrano, S. M., Camarero, J. J., Olano, J. M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., Gazol, A., Azorin-Molina, C., Bhuyan, U & El-Kenawy, A.. “Diverse relationships between forest growth and the normalized difference vegetation index at a global scale”. Remote Sensing of Environment, 187, 14-29, 2016.
  • [35] Chavez, R. O., Clevers, J. G. P. W., Decuyper, M., De Bruin, S & Herold, M.. “50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)?”. Journal of Arid Environment, 124, 292-303, 2016.
  • [36] Butt, B.. “Environmental indicators and governance”. Current Opinion on Environmental Sustainability 32, 84-89, 2018.
  • [37] Grant, B. G.. “UAV imagery analysis: Challenges and opportunities. In: Proceedings of the long-range imaging II”. Anaheim, CA, vol 10204, p 1020406, 2017.
  • [38] Jones, H. G & Vaughan, R. A.. “Remote sensing of vegetation: Principles, techniques and applications”. Oxford University Press, New York, p 353, 2010.
  • [39] Chu, H. S., Venevsky, S., Wu, C & Wang, M. H.. “NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015”. Sci. Total Environ. 650, 2051-2062, 2019. https://doi.org/10.1016/j. scitotenv.2018.09.115
  • [40] Mao, D., Wang, Z., Luo, L & Ren, C.. “Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China”. International Journal of Applied Earth Observation and Geoinformatics, 18, 528-536, 2012. https://doi.org/10.1016/j. jag.2011.10.007
  • [41] Zhao, J., Huang, S., Huang, Q., Wang, H., Leng, G & Fang, W.. “Time-lagged response of vegetation dynamics to climatic and teleconnection factors”. Catena, 189, 104474, 2020. https://doi.org/10.1016/j.catena.104474
  • [42] Buyantuyev, A & Wu, J.. “Urbanization diversifies land surface phenology in arid environments: Interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA”. Landscape Urban Plan, 105 (1-2), 149-159, 2012. https://doi.org/10.1016/j.landurbplan.2011.12.013
  • [43] Olujobi, O. J.. “Analysis of the Legal Framework Governing Gas Flaring in Nigeria’s Upstream Petroleum Sector and the Need for Overhauling”. Social Science,9, 132, 2020.
  • [44] Aigbe, G. O., Cotton, M & Stringer, L. C.. “Global gas flaring and energy justice: An empirical ethics analysis of stakeholder perspectives”. Energy Research & Social Science 99, 103064, 2023.
  • [45] Olujobi, O. J., Yebisi, T. E., Patrick, O. P & Ariremako, A. I.. “The Legal Framework for Combating Gas Flaring in Nigeria’s Oil and Gas Industry: Can It Promote Sustainable Energy Security?”. Sustainability, 14, 7626, 2022. https://doi.org/10.3390/su1413762.
  • [46] Alola, A. A., Onifade, S. T., Magazzino, C & Obekpa, H. O.. “The effects of gas flaring as moderated by government quality in leading natural gas flaring economies”. Scientific Reports,13: 14394, 2023. https://doi.org/10.1038/s41598-023-38032-w.
  • [47] Sandunika, D.M.I., Dilka, S.H.S., Alwis, M.K.S.D., Siriwardhana, S.M.G.T., M. S, N., Perera, W.A.V.T., Sandeepa, R.A.H.T., Panagoda, L.P.S.S., Chamara, N.N., & Kumarasiri, K.A.C.S.. “Assessing the effectiveness and sustainability of carbon capture and storage (ccs) technologies for mitigating greenhouse gas emissions”. 2020.
  • [48] Thepsaskul, W., Wongsapai, W., Sirisrisakulchai, J., Jaitiang, T., Daroon, S., Raksakulkan, V., Muangjai, P., Ritkrerkkrai, C., Suttakul, P., & Wattakawigran, G.. “Potential business models of carbon capture and storage (CCS) for the oil refining industry in Thailand”. Energies, 16(19), p.6955, 2023.
  • [49] Ekemezie, I. O & Digitemie, W. N,. “Climate change mitigation strategies in the oil and gas sector. A review of practices and impact”. Engineering Science & Technology Journal, Volume 5, Issue 3, 935-948, 2024.
  • [50] Van Oort, E., Chen, D., Ashok, P., & Fallah, A.. “Constructing deep closed-loop geothermal wells for globally scalable energy production by leveraging oil and gas ERD and HPHT well construction expertise”. In SPE/IADC Drilling Conference and Exhibition (p. D021S002R001). SPE. 2021, March.
  • [51] Lyons, W. C., Stanley, J. H., Sinisterra, F. J., & Weller, T.. “Air and Gas Drilling Manual: Applications for Oil, Gas, Geothermal Fluid Recovery Wells, Specialized Construction Boreholes, and the History and Advent of the Directional DTH”. Gulf Professional Publishing. 2020.
  • [52] Elvidge, C. D., Bazilian, M. D., Zhizhin, M., Ghosh, T., Baugh, K & Hsu, F. (2018). The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Reviews 20 (2018) 156-162.
  • [53] Zolfaghari, M., Pirouzfar, V and Sakhaeinia, H.. “Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants”. Energy 124481-491, 2017.
  • [54] ESRI.. “Map of Nigeria, map of Rivers State and map of 11 gas flaring studied sites”. 2024.
  • [55] Chander, G & Markham, K.. “Revised Landsat 5 TM Radiometric Calibration Procedures and Post Calibration Ranges”. IEEE Transaction of Geosciences and Remote Sensing 41(11): 2674-2677, 2003.
  • [56] NASA.. “National Aeronautics and Space Administration. Landsat 7 ETM+ Science Data Users Handbook”. [Online]. Available: http://www.landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html [Accessed 23rd January 2022].
  • [57] Ihlen, V.. “Landsat 8 (L8) Data Users Handbook”, Version 5.0. Department of the Interior, U.S. Geological Survey. 2019.
  • [58] Markham, B. L &Barker, J. L.. “Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperature”. EOSAT Landsat Technical Notes: 3-8, 1986.
  • [59] Lavender, S. J.. “Monitoring land cover dynamics at varying spatial scales using high to very high resolution optical imagery”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B8, XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic.
  • [60] Liang, S., Fang, H &Chen, M.. “Atmospheric Correction of Landsat ETM+ Land Surface Imagery - Part I: Methods”. IEEE Transactions on Geoscience and Remote Sensing 39(11): 2490-2498, 2001.
  • [61] Chavez, P. S.. “Image-based Atmospheric Corrections-Revisited and Improved”. Photogrammetry Engineering and Remote Sensing 62(9): 1025-1036, 1996.
  • [62] Santer, R., Carrere, V., Dubuisson, P & Roger, J. C.. “Atmospheric correction over land for MERIS”. International Journal of Remote Sensing 20: 1819-1840, 1999.
  • [63] Şatır, O & Berberoğlu, S. (2012). Land Use/Cover Classification Techniques Using Optical Remotely Sensed Data in Landscape Planning, Landscape Planning, Dr. Murat Ozyavuz (Ed.), ISBN: 978-953-51-0654-8, InTech. [Online]. Available: http://www.intechopen.com/books/landscape-planning/land-use-cover-classificationtechniques-using-optical-remotely-sensed-data-in-landscape-plannin [Accessed 15th May 2023]
  • [64] Maaharjan, A.. “Land use/land cover of Katrimandu valley by using Remote Sensing and GIS. M.Sc. Dissertation submitted to Central Department of Environmental Sciences”, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. 2018.
  • [65] Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X & Ferreira, L.G.. “Overview of the radiometric and biophysical performance of the MODIS vegetation indices”. Remote Sensing of Environment, 83 (1-2), 195-213, 2002. https://doi.org/10.1016/S0034-4257(02) 00096-2
  • [66] Goward, S. N., Tucker, C. J. &Dye, D. G.. “North American vegetation patterns observed with the NOAA-7 Advanced Very High-Resolution Radiometer”. Vegetation, 64, 3-14, 1985.
There are 66 citations in total.

Details

Primary Language English
Subjects Geology (Other)
Journal Section Review Articles
Authors

Barnabas Morakınyo 0000-0002-5066-8071

Publication Date December 30, 2024
Submission Date September 27, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2024

Cite

IEEE B. Morakınyo, “Time series analysis from 1984 to 2023 of Earth Observation Satellites data for evaluating changes in vegetation cover and health at flaring sites in the Niger Delta, Nigeria”, APJHAD, vol. 5, no. 2, pp. 76–100, 2024, doi: 10.52114/apjhad.1557231.
Academic Platform Journal of Natural Hazards and Disaster Management (APJHAD)