Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 10 Sayı: Prof. Dr. RASKUL IBRAGIMOV Özel Sayısı, 209 - 216, 15.05.2023

Öz

Kaynakça

  • 1. Gnedenko B.V., Makarov I.P. Properties of solutions to a problem with losses in the case of periodic intensities. - Differential Equations, 1971, vol. 7, 9, p. 1696-1698.
  • 2. Akhmedov A.B. On the existence of periodic solutions systems of Kolmogorov equations with variable parameters.-Tez. report 4 International Vilnius conf. in probability theory and mathematical statistics Vilnius, 1985, v.1, pp. 46-47.
  • 3. Akhmedov A.B. On periodic solutions of probabilistic differential equations. - Izv. Academy of Sciences of the Uzbek SSR. ser. Phys.-Math. n., 1986, 1 p. 11-14.
  • 4. Akhmedov A.B. On limiting periodic states probabilistic systems.- Tez. report 8 republics intercollegiate scientific conf. in mathematics and mechanics. Alma-Ata, 1985, p.2
  • 5. Gnedenko B.V., On the problems of the theory of queuing.- Tr. 3 All-Union. schools-meetings on the theory of queuing. Pushchino-on-Oka, 1974, p. 41-51.
  • 6. Gnedenko B.V., Kovalenko I.N. Introduction to the theory of queuing - M. Nauka, 1996 .- 431 p.
  • 7. Feller V. Introduction to the theory of probability and its applications.-M. Mir, vol. 1, 1964.

ABOUT PERIODIC STATES OF SYSTEMS OF MASSSERVICE WITH PERIODIC PARAMETERS

Yıl 2023, Cilt: 10 Sayı: Prof. Dr. RASKUL IBRAGIMOV Özel Sayısı, 209 - 216, 15.05.2023

Öz

In this article periodic solution from the theory of quenes is considered
For the M/M/n/m queue when the Poisson processes are time homogeneous is
given and for arrivals the service time distribution exponential. Arrrivals follow a Poisson distribution with an arrival rate λ (t) that varies with time t
and service times are exponential with a departure rate μ (t). The queue in
discrete points is considered. The distance between discrete points equally
period of λ (t) and μ (t). The queue in discrete points is formed a Markov
chain. This Markov chain aperiodical. This aperiodical Markov chain have
asymptotical stationary solution. If λ (t) and μ (t) continuous density and
λ (t)= λ (t+T) , μ (t) = μ (t+T). The transition probabilities Рij (t) satisfy an
equation of Kolmogorov

Kaynakça

  • 1. Gnedenko B.V., Makarov I.P. Properties of solutions to a problem with losses in the case of periodic intensities. - Differential Equations, 1971, vol. 7, 9, p. 1696-1698.
  • 2. Akhmedov A.B. On the existence of periodic solutions systems of Kolmogorov equations with variable parameters.-Tez. report 4 International Vilnius conf. in probability theory and mathematical statistics Vilnius, 1985, v.1, pp. 46-47.
  • 3. Akhmedov A.B. On periodic solutions of probabilistic differential equations. - Izv. Academy of Sciences of the Uzbek SSR. ser. Phys.-Math. n., 1986, 1 p. 11-14.
  • 4. Akhmedov A.B. On limiting periodic states probabilistic systems.- Tez. report 8 republics intercollegiate scientific conf. in mathematics and mechanics. Alma-Ata, 1985, p.2
  • 5. Gnedenko B.V., On the problems of the theory of queuing.- Tr. 3 All-Union. schools-meetings on the theory of queuing. Pushchino-on-Oka, 1974, p. 41-51.
  • 6. Gnedenko B.V., Kovalenko I.N. Introduction to the theory of queuing - M. Nauka, 1996 .- 431 p.
  • 7. Feller V. Introduction to the theory of probability and its applications.-M. Mir, vol. 1, 1964.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Askar Akhmedov

Yayımlanma Tarihi 15 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: Prof. Dr. RASKUL IBRAGIMOV Özel Sayısı

Kaynak Göster

APA Akhmedov, A. (2023). ABOUT PERIODIC STATES OF SYSTEMS OF MASSSERVICE WITH PERIODIC PARAMETERS. Avrasya Sosyal Ve Ekonomi Araştırmaları Dergisi, 10(Prof. Dr. RASKUL IBRAGIMOV Özel Sayısı), 209-216.