Research Article
BibTex RIS Cite

FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ

Year 2019, Volume: 29 Issue: 2, 268 - 276, 22.03.2019
https://doi.org/10.17567/ataunidfd.448486

Abstract



Amaç: Bu çalışmada,  kenar bitim ve alt yapı şekillerinin çeşitli zirkonyum
alt yapılar üzerindeki vener porselenlerinin kırılma direncine etkisi in vitro olarak incelenmiştir.



Gereç ve Yöntem: Örneklerin elde edileceği kesilmiş üst
1. küçük azı dişini temsil eden güdükler; 
1. Güdük;  6 mm kuron boyu ve 6
0
taper açısında 1 mm shoulder basamak ile anatomik oklüzal yüzeyli, 2. Güdük; 6
mm kuron boyu ve 6
0 taper açısında 1 mm chamfer basamak ile anatomik
oklüzal yüzeyli,  3. Güdük; 6 mm kuron
boyu ve 6
0 taper açısında, 1 mm shoulder basamak ile düz oklüzal
yüzeyli, 4. Güdük; 6 mm kuron boyu ve 6
0 taper açısında 1 mm chamfer
basamak ile düz oklüzal yüzeyli olarak standardizasyonun sağlanması amacıyla
CNC torna tezgahında hazırlanmıştır.
Güdüklerden alınan ölçülerden 60 adet epoksi rezin güdük elde
edilmiştir. Zirkonyum alt yapılar farklı yöntemlerle hazırlandıktan sonra üst
yapı porseleni uygulanarak kuronlar tamamlanmıştır. Kuronlar epoksi rezin
güdükler üzerine simante edildikten sonra vener porselenlerinin kırılma
dirençleri Universal test cihazında saptanmıştır.



Bulgular: Veriler üç yönlü varyans analizi
(ANOVA) ile değerlendirilmiştir.
Kenar bitim şekli, alt yapı şekli ve materyallerin, materyaller ile
alt yapı şekli, materyaller ile kenar bitim şekli arasındaki etkileşimin
anlamlı olduğu, kenar bitim şekli ile alt yapı şekli, materyaller ile alt yapı
şekli ve kenar bitim şekli arasındaki etkileşimlerin ise anlamlı olmadığı
istatistiksel olarak tespit edilmiştir.



Sonuç: En yüksek vener porselen kırılma direnci değerlerinin alt yapısı
anatomik şekilde hazırlanan chamfer basamaklı White Peaks kuronlarda, en düşük
kırılma direnci değerlerinin ise alt yapısı düz şekilde hazırlanan chamfer
basamaklı Lava kuronlarda olduğu görülmüştür.



Anahtar Kelimeler: Alt yapı şekli, kenar bitim şekli,
kırılma direnci, zirkonyum alt yapılar.



Effect of different marginal finish
lines and coping designs on the fracture resistance of veneering porcelain on
various zirconia frameworks              



ABSTRACT



Aim: In this in vitro study, the
effect of finish line and coping design on the fracture resistance of veneer
porcelains on the zirconia frameworks prepared through various methods was
analyzed.



Material and Methods: To standardization, the dies
representing the upper first premolar tooth were prepared in the CNC turning
machine as: the first die; with a 6 mm crown length and at 6
0 taper
angle, having an anatomic occlusal surface with a 1 mm shoulder line, the
second die; with a 6 mm crown length and at 6
0 taper angle, having
an anatomic occlusal surface with a 1 mm chamfer line, the third die; with a 6
mm crown length and at 6
0 taper angle, having a flat occlusal
surface with a 1 mm shoulder line, and the fourth die; with a 6 mm crown length
and at 6
0 taper angle, having a 1 mm chamfer line with a flat
occlusal surface. 60 pieces of epoxy resin dies were obtained from the
measurements taken from the dies. Zirconia frameworks had been prepared through
different methods, then crowns were completed by applying the body porcelain.
After cementation the crowns on the epoxy resin dies, the fracture resistance
of veneer porcelains was measured by the Universal Test device.



Results: The
data were analyzed by three-way variance analysis (ANOVA). It was statistically
determined that the interaction between the finish line, coping design and
materials; and the materials and coping design, and the finish line and the
materials. However; no significant interaction was observed between the finish line
and coping design; and the materials, coping design and the finish line.



Conclusion: The highest fracture resistance values
of veneer porcelain was seen in chamfer line White Peaks crowns prepared
anatomically, whereas the framework of the lowest fracture resistance values
was seen in the chamfer line Lava crowns.



Key
Words:
Coping design, finish lines, fracture resistance,
zirconia frameworks

References

  • 1. Mıura S, Kasahara S, Yamauchı S, Okuyama Y, Izumıda A, Aıda J, Egusa H. Clinical Evaluation of zirconia-basedall-ceramic single crowns: an up to 12-year retrospectivecohort study. Clin Oral Invest 2018; https://doi.org/10.1007/s00784-017-2142-y.
  • 2. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-leucite-mica-and zirconia-based ceramics. J Dent 2000; 28: 529-35.
  • 3. Oılo M, Gjerdet NR. Fractographic analyses of all-ceramiccrowns: a study of 27 clinically fractured crowns. Dent Mater 2013; 29: e78-84.
  • 4. Dogan S, Raıgrodskı AJ, Zhang H, Mancl LA. Prospectivecohort clinical study assessing the 5-year survival and successof anterior maxillary zirconia-based crowns with customizedzirconia copings. J Prosthet Dent 2017; 117: 226-32.
  • 5. Omori S, Komada W, Yoshida K, Miura H. Effect of thickness of zirconia-ceramic crown frameworks on strength and fracture pattern. Dent Mater J 2013; 32: 189-94.
  • 6. Rafferty BT, Janal MN, Zavanellı RA, Sılva NR, Rekow ED, Thompson VP, Coelho PG. Design features of a three-dimensional molar crown and related maximum principalstress. A finite element model study. Dent Mater 2010; 26:156-63.
  • 7. Llobell A, Nicholls JI, Kois JC, Daly CH. Fatigue life of porcelain repair systems. Int J Prosthodont 1992; 5: 205-13.
  • 8. Pjetursson BE, Tan WC, Tan K, Bragger U, Zwahlen M, Lang NP. A systematic review of the survival and complication rates of resin-bonded bridges after an observation period of at least 5 years. Clin Oral İmplants Res 2008; 19: 131-41.
  • 9. Nejatıdanesh F, Moradpoor H, Savabı O. Clinical outcomesof zirconia-based implant- and tooth-supported single crowns. Clin Oral Investig 2016; 20: 169-78.
  • 10. Piwowarczyk A, Ottl P, Lauer HC, Kuretzky T. A clinical report and overview of scientific studies and clinical procedures conducted on the 3M ESPE Lava all-ceramic system. J Prosthodont 2005; 14: 39-45.
  • 11. Besimo CE, Spielmann HP, Rohne, HP. Computedassisted generation of all-ceramic crowns and fixed partial dentures. Int. J Comput Dent 2001; 4: 243-62.
  • 12. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP. Materials design in the performance of all-ceramic crowns. Biomaterials 2004; 25: 2885-92.
  • 13. Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004; 31: 682-8.
  • 14. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. J Prosthet Dent 2001; 85: 363-76.
  • 15. Güngör MA, Dündar M, Karaoğlu Ç, Sonugelen M, Artunç C. Tam seramik malzemelerde basamak şeklinin gerilim dağılımına etkisi: Sonlu elemanlar stres analizi. Ege Üniv Diş Hek Fak Derg 2005; 26: 145-53.
  • 16. Shillingburg H, Hobo S, Whitsett L, Jacobi R, Brackett S. Principles of tooth preparation. In: Fundamentals of fixed prosthodontics. 3 ed. Chicago; Quintessence Publishing; 1997. p. 119-137.
  • 17. Ernst CP, Cohnen U, Stender E, Willershausen B. In vitro retentive strength of zirconium oxide ceramic crowns using different luting agents. J Prosthet Dent 2005; 93: 551-8.
  • 18. Alkurt M, Yesil Duymus Z. Değişik yöntemlerle hazırlanan metal alt yapılar üzerindeki veneer porselenlerinin kırılma direncine farklı kenar bitim şekillerinin etkisinin incelenmesi. Atatürk Üniv Diş Hek Fak Derg 2016; 26: 465-72.
  • 19. Beuer F, Aggstaller H, Edelhoff D, Gernet W. Effect of preparation design on the fracture resistance of zirconia crown copings. Dent Mater J 2008; 27: 362-7.
  • 20. Di Iorio D, Murmura G, Orsini G, Scarano A, Caputi S. Effect of margin design on the fracture resistance of Procera all ceram cores: an in vitro study. J Contemp Dent Pract 2008; 9: 1-8.
  • 21. Cho L, Choi J, Yi YJ, Park CJ. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns. J Prosthet Dent 2004; 91: 554-60.
  • 22. Jalalian E, Atashkar B, Rostami R. The effect of preparation design on the fracture resistance of zirconia crown copings (computer associated design/computer associated machine, CAD/CAM system). J Dent (Tehran, Iran) 2011; 8: 123-9.
  • 23. Miura S, Kasahara S, Yamauchi S, Egusa H. Effect of finish line design on stress distribution in bilayer and monolithic zirconia crowns: a three-dimensional finite element analysis study. Eur J Oral Sci 2018; 126: 159-65.
  • 24. Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 14 years. Part II: effect of thickness of Dicor material and design of tooth preparation. J Prosthet Dent 1999; 81: 662-7.
  • 25. Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013; 29: 307-16.
  • 26. Yesil Duymus Z, Alkurt M. Değişik yöntemlerle hazırlanan metal alt yapılar üzerindeki veneer porselenlerinin kırılma direncine farklı alt yapı şekillerinin etkisinin incelenmesi. Atatürk Üniv Diş Hek Fak Derg 2016; 26: 457-64.
  • 27. Ha SR, Kim SH, Han JS, Yoo SH, Jeong SC, Lee JB, Yeo IS. The influence of various core designs on stress distribution in the veneered zirconia crown: A finite element analysis study. J Adv Prosthodont 2013; 5: 187-97.
  • 28. Benetti P, Pelogia F, Valandro LF, Bottino MA, Bona AD. The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system. Dent Mater 2011; 27: 948-53.
  • 29. Larsson C, El Madhoun S, Wennerberg A, Vult von Steyern P. Fracture strength of yttria-stabilized tetragonal zirconia polycrystals crowns with different design: an in vitro study. Clin Oral İmplants Res 2012; 23: 820-6.
  • 30. Bonfante EA, Rafferty B, Zavanelli RA, Silva NR, Rekow ED, Thompson VP, Coelho PG. Thermal/mechanical simulation and laboratory fatigue testing of an alternative yttria tetragonal zirconia polycrystal core-veneer all-ceramic layered crown design. Eur J Oral Sci 2010; 118: 202-29.
  • 31. Sundh A, Sjogren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 2006; 22: 778-84.
  • 32. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater 2009; 25: 383-91.
Year 2019, Volume: 29 Issue: 2, 268 - 276, 22.03.2019
https://doi.org/10.17567/ataunidfd.448486

Abstract

References

  • 1. Mıura S, Kasahara S, Yamauchı S, Okuyama Y, Izumıda A, Aıda J, Egusa H. Clinical Evaluation of zirconia-basedall-ceramic single crowns: an up to 12-year retrospectivecohort study. Clin Oral Invest 2018; https://doi.org/10.1007/s00784-017-2142-y.
  • 2. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-leucite-mica-and zirconia-based ceramics. J Dent 2000; 28: 529-35.
  • 3. Oılo M, Gjerdet NR. Fractographic analyses of all-ceramiccrowns: a study of 27 clinically fractured crowns. Dent Mater 2013; 29: e78-84.
  • 4. Dogan S, Raıgrodskı AJ, Zhang H, Mancl LA. Prospectivecohort clinical study assessing the 5-year survival and successof anterior maxillary zirconia-based crowns with customizedzirconia copings. J Prosthet Dent 2017; 117: 226-32.
  • 5. Omori S, Komada W, Yoshida K, Miura H. Effect of thickness of zirconia-ceramic crown frameworks on strength and fracture pattern. Dent Mater J 2013; 32: 189-94.
  • 6. Rafferty BT, Janal MN, Zavanellı RA, Sılva NR, Rekow ED, Thompson VP, Coelho PG. Design features of a three-dimensional molar crown and related maximum principalstress. A finite element model study. Dent Mater 2010; 26:156-63.
  • 7. Llobell A, Nicholls JI, Kois JC, Daly CH. Fatigue life of porcelain repair systems. Int J Prosthodont 1992; 5: 205-13.
  • 8. Pjetursson BE, Tan WC, Tan K, Bragger U, Zwahlen M, Lang NP. A systematic review of the survival and complication rates of resin-bonded bridges after an observation period of at least 5 years. Clin Oral İmplants Res 2008; 19: 131-41.
  • 9. Nejatıdanesh F, Moradpoor H, Savabı O. Clinical outcomesof zirconia-based implant- and tooth-supported single crowns. Clin Oral Investig 2016; 20: 169-78.
  • 10. Piwowarczyk A, Ottl P, Lauer HC, Kuretzky T. A clinical report and overview of scientific studies and clinical procedures conducted on the 3M ESPE Lava all-ceramic system. J Prosthodont 2005; 14: 39-45.
  • 11. Besimo CE, Spielmann HP, Rohne, HP. Computedassisted generation of all-ceramic crowns and fixed partial dentures. Int. J Comput Dent 2001; 4: 243-62.
  • 12. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP. Materials design in the performance of all-ceramic crowns. Biomaterials 2004; 25: 2885-92.
  • 13. Sundh A, Sjogren G. A comparison of fracture strength of yttrium-oxide- partially-stabilized zirconia ceramic crowns with varying core thickness, shapes and veneer ceramics. J Oral Rehabil 2004; 31: 682-8.
  • 14. Goodacre CJ, Campagni WV, Aquilino SA. Tooth preparations for complete crowns: an art form based on scientific principles. J Prosthet Dent 2001; 85: 363-76.
  • 15. Güngör MA, Dündar M, Karaoğlu Ç, Sonugelen M, Artunç C. Tam seramik malzemelerde basamak şeklinin gerilim dağılımına etkisi: Sonlu elemanlar stres analizi. Ege Üniv Diş Hek Fak Derg 2005; 26: 145-53.
  • 16. Shillingburg H, Hobo S, Whitsett L, Jacobi R, Brackett S. Principles of tooth preparation. In: Fundamentals of fixed prosthodontics. 3 ed. Chicago; Quintessence Publishing; 1997. p. 119-137.
  • 17. Ernst CP, Cohnen U, Stender E, Willershausen B. In vitro retentive strength of zirconium oxide ceramic crowns using different luting agents. J Prosthet Dent 2005; 93: 551-8.
  • 18. Alkurt M, Yesil Duymus Z. Değişik yöntemlerle hazırlanan metal alt yapılar üzerindeki veneer porselenlerinin kırılma direncine farklı kenar bitim şekillerinin etkisinin incelenmesi. Atatürk Üniv Diş Hek Fak Derg 2016; 26: 465-72.
  • 19. Beuer F, Aggstaller H, Edelhoff D, Gernet W. Effect of preparation design on the fracture resistance of zirconia crown copings. Dent Mater J 2008; 27: 362-7.
  • 20. Di Iorio D, Murmura G, Orsini G, Scarano A, Caputi S. Effect of margin design on the fracture resistance of Procera all ceram cores: an in vitro study. J Contemp Dent Pract 2008; 9: 1-8.
  • 21. Cho L, Choi J, Yi YJ, Park CJ. Effect of finish line variants on marginal accuracy and fracture strength of ceramic optimized polymer/fiber-reinforced composite crowns. J Prosthet Dent 2004; 91: 554-60.
  • 22. Jalalian E, Atashkar B, Rostami R. The effect of preparation design on the fracture resistance of zirconia crown copings (computer associated design/computer associated machine, CAD/CAM system). J Dent (Tehran, Iran) 2011; 8: 123-9.
  • 23. Miura S, Kasahara S, Yamauchi S, Egusa H. Effect of finish line design on stress distribution in bilayer and monolithic zirconia crowns: a three-dimensional finite element analysis study. Eur J Oral Sci 2018; 126: 159-65.
  • 24. Malament KA, Socransky SS. Survival of Dicor glass-ceramic dental restorations over 14 years. Part II: effect of thickness of Dicor material and design of tooth preparation. J Prosthet Dent 1999; 81: 662-7.
  • 25. Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater 2013; 29: 307-16.
  • 26. Yesil Duymus Z, Alkurt M. Değişik yöntemlerle hazırlanan metal alt yapılar üzerindeki veneer porselenlerinin kırılma direncine farklı alt yapı şekillerinin etkisinin incelenmesi. Atatürk Üniv Diş Hek Fak Derg 2016; 26: 457-64.
  • 27. Ha SR, Kim SH, Han JS, Yoo SH, Jeong SC, Lee JB, Yeo IS. The influence of various core designs on stress distribution in the veneered zirconia crown: A finite element analysis study. J Adv Prosthodont 2013; 5: 187-97.
  • 28. Benetti P, Pelogia F, Valandro LF, Bottino MA, Bona AD. The effect of porcelain thickness and surface liner application on the fracture behavior of a ceramic system. Dent Mater 2011; 27: 948-53.
  • 29. Larsson C, El Madhoun S, Wennerberg A, Vult von Steyern P. Fracture strength of yttria-stabilized tetragonal zirconia polycrystals crowns with different design: an in vitro study. Clin Oral İmplants Res 2012; 23: 820-6.
  • 30. Bonfante EA, Rafferty B, Zavanelli RA, Silva NR, Rekow ED, Thompson VP, Coelho PG. Thermal/mechanical simulation and laboratory fatigue testing of an alternative yttria tetragonal zirconia polycrystal core-veneer all-ceramic layered crown design. Eur J Oral Sci 2010; 118: 202-29.
  • 31. Sundh A, Sjogren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 2006; 22: 778-84.
  • 32. Aboushelib MN, Feilzer AJ, Kleverlaan CJ. Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater 2009; 25: 383-91.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Murat Alkurt 0000-0001-9324-0158

Zeynep Yeşil Duymuş This is me 0000-0001-7162-8792

Publication Date March 22, 2019
Published in Issue Year 2019 Volume: 29 Issue: 2

Cite

APA Alkurt, M., & Yeşil Duymuş, Z. (2019). FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 29(2), 268-276. https://doi.org/10.17567/ataunidfd.448486
AMA Alkurt M, Yeşil Duymuş Z. FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. March 2019;29(2):268-276. doi:10.17567/ataunidfd.448486
Chicago Alkurt, Murat, and Zeynep Yeşil Duymuş. “FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29, no. 2 (March 2019): 268-76. https://doi.org/10.17567/ataunidfd.448486.
EndNote Alkurt M, Yeşil Duymuş Z (March 1, 2019) FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29 2 268–276.
IEEE M. Alkurt and Z. Yeşil Duymuş, “FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ”, Ata Diş Hek Fak Derg, vol. 29, no. 2, pp. 268–276, 2019, doi: 10.17567/ataunidfd.448486.
ISNAD Alkurt, Murat - Yeşil Duymuş, Zeynep. “FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 29/2 (March 2019), 268-276. https://doi.org/10.17567/ataunidfd.448486.
JAMA Alkurt M, Yeşil Duymuş Z. FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2019;29:268–276.
MLA Alkurt, Murat and Zeynep Yeşil Duymuş. “FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 29, no. 2, 2019, pp. 268-76, doi:10.17567/ataunidfd.448486.
Vancouver Alkurt M, Yeşil Duymuş Z. FARKLI KENAR BİTİM VE ALT YAPI DİZAYNLARININ ÇEŞİTLİ ZİRKONYUM ALT YAPILAR ÜZERİNDEKİ VENER PORSELENİN KIRILMA DİRENCİNE ETKİSİNİN İNCELENMESİ. Ata Diş Hek Fak Derg. 2019;29(2):268-76.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.