Research Article
BibTex RIS Cite

BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI

Year 2020, Volume: 30 Issue: 3, 418 - 423, 15.07.2020
https://doi.org/10.17567/ataunidfd.652351

Abstract

AMAÇ: Restorasyonlarda kullanılan dental materyallerin radyoopasiteleri, radyografik tanıların konulmasında oldukça önemlidir. Bu sebeple çalışmamızda farklı akıcı kompozit rezinlerin dijital bir görüntü analizi kullanılarak radyoopasitelerinin değerlendirilmesi amaçlanmıştır.
YÖNTEM: 5 farklı akıcı kompozit rezin [ (Aeliteflo, BISCO), (Brillant Ever Glow, Coltène), (Dynamic Flow, President Dental), (G-ænial Universal Flo, GC Corp.), (Novo compo-HF, Imicryl)] her grup için üç adet disk şeklinde 1 mm kalınlığında 8 mm çapında örnek teflon kalıplar kullanılarak hazırlanmıştır. Kontrol grubu için yeni çekilmiş dişten mine ve dentini içerecek şekilde 1 mm kalınlığında kesit alınmıştır. Örnekler alüminyum step-kama ile birlikte okluzal film üzerine yerleştirilmiş ve 60 kV, 7mA ve 0.13sn değerlerinde dijital radyograf alınmıştır. VistaScan cihazıyla dijital ortama aktarıldıktan sonra alüminyum step-kamanın ve akıcı kompozit rezinlerin radyoopasiteleri Adobe Photoshop CS5 programıyla 10x10 piksellik farklı alanlardan hesaplamalarla ortalama grilik değerlerine (MGVs) çevrilmiştir. Akıcı kompozit rezinler için eşdeğer alüminyum kalınlığı CurveExpert Professional programı ile hesaplanmıştır.
BULGULAR: Kullanılan akıcı kompozit rezinlerin Al eşdeğer radyoopasitelerinin sıralaması; Novo compo-HF (2,81mm Al) > Brillant ever glow (2,15mm Al) > Aeliteflo (1,64mm Al) > Dynamic flow (1,61mm Al) > G-ænial Universal Flo (1,19 mm Al) (p<0,05) şeklindedir. G-ænial Universal Flo ve dentin 1mm Alüminyum radyoopasite değerine istatistiksel olarak en yakın sonucu vermiştir. Novo compo-HF mineden daha radyoopak olmakla beraber yakın MGV’ ye sahiptir.
SONUÇ: Akıcı kompozit rezinlerin radyoopasiteleri önemli ölçüde çeşitlilik göstermektedir. Akıcı kompozit rezinlerin, uygulanan kompozit rezin restorasyonların altında sekonder çürükle karıştırılmaması ve farklı materyal kullanıldığının belirlenebilmesi için farklı radyoopasite değerlerinde seçimler yapılabilir. Ayrıca radyografik analiz yapılırken bu farklı radyoopasite değerlerinin bilinmesi diagnostik değerlendirmede ve teşhiste yardımcı olacaktır.
Anahtar Kelimeler: Akıcı kompozit rezin, radyoopasite, ortalama grilik değeri

COMPARATIVE RADIOPACITIES OF FIVE FLOWABLE RESIN COMPOSITES
AIM: The radiopacities of the dental materials in the restoration are very important in getting radiographic diagnosis. For this reason, we aimed to evaluate the radiopacity of different flowable composites using a digital image analysis.
METHODS: For the 5 different flowable resin composites [(Aeliteflo, BISCO), (Brillant Ever Glow, Coltène), ( Dynamic Flow, President Dental), ( G-ænial Universal Flo, GC Corp.), ( Novo compo-HF, Imicryl)]; 3 discs with a thickness of 1 mm and a diameter of 8 mm were prepared with using teflon mold. For the control group, a slice of 1 mm thickness was taken to contain enamel and dentin from the freshly extracted tooth. The samples were placed on an occlusal film with the aluminum step wedge and the film was exposed with a dental x-ray unit at 60 kV, 7 mA, and 0.13 second. After transferring to the digital image using VistaScan; the radiopacities of aluminum step-wedges and the flowable resin composites were converted to mean gray values (MGVs) from different areas which is 10x10 pixel by Adobe Photoshop CS5 program. Equivalent aluminum thickness for each flowable resin composite is calculated with the CurveExpert Professional Program.
RESULTS: The order of the Al equivalent radiopacities of the flowable resin composites used is as follows; Novo compo-HF (2,81mm Al) > Brillant ever glow (2,15mm Al) > Aeliteflo (1,64mm Al) > Dynamic flow (1,61mm Al) > G-ænial Universal Flo (1,19 mm Al) (p<0,05). G-ænial Universal Flo and dentin got the closest result to 1mm Aluminum radiopacity value statistically. The Novo compo-HF is more radiopaque than the enamel and has close MGV.
CONCLUSION: The radiopacity of flowable resin composites varies considerably, Selections can be made at different radiopacity values so that they do not be confused with secondary caries under the applied composite restorations and indicate that different materials are used. In addition, knowing these different radiopaque values while performing radiographic analysis will help diagnose.
Keywords: Flowable resin composites, radiopacity, mean gray value

References

  • 1. Jackson RD, Morgan M. The new posterior resins and: a simplified placement technique. J. Am. Dent. Assoc., 2000, 131: 375-383.
  • 2. Stephen CB. A characterization of first-generation flowable composites. JADA, 1998, 129: 567-577.
  • 3. Summitt JB, Robbins JW, Hilton TJ, Schwartz RS, Dos Santos Jr J. Fundamentals of operative dentistry: a contemporary approach. Baskı. Quintessence Pub., 2006.
  • 4. Cadenaro M, Marchesi G, Antoniolli F, Davidson C, Dorigo EDS, Breschi L. Flowability of composites is no guarantee for contraction stress reduction. Dent Mater J, 2009, 25: 649-654.
  • 5. Lee I-B, Min S-H, Kim S-Y, Ferracane J. Slumping tendency and rheological properties of flowable composites. Dent Mater J, 2010, 26: 443-448.
  • 6. Imperiano MT, Khoury HJ, Pontual MLA, Montes MAJR, Silveira MMF. Comparative radiopacity of four lowviscosity composites. Braz. J. Oral Sci., 2007, 6: 1278-1282.
  • 7. Bouschlicher M, Cobb D, Boyer D. Radiopacity of compomers, flowable and conventional resin composites for posterior restorations. Oper. Dent., 1999, 24: 20-25.
  • 8. Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater J, 1991, 7: 114-117.
  • 9. Koliniotou-Koumpia E, Dionysopoulos P, Papadimitriou S, Koumbia E, Dionysopoulos D. Sealing effectiveness of two liners and one flowable composite resin in vivo in class V restorations. Hellenic Dent. J., 2006, 16: 11-16.
  • 10. Marouf N, Sidhu S. A study on the radiopacity of different shades of resin-modified glass-ionomer restorative materials. Oper. Dent., 1998, 23: 10-14.
  • 11. Hara AT, Serra MC, AL RJ. Radiopacity of glass-ionomer/composite resin hybrid materials. Braz Dent J, 2001.
  • 12. Chan D, Titus H, Chung K-H, Dixon H, Wellinghoff S, Rawls H. Radiopacity of tantalum oxide nanoparticle filled resins. Dent Mater J, 1999, 15: 219-222.
  • 13. Van Dijken JW, Wing KR, Ruyter IE. An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontol. Scand., 1989, 47: 401-407.
  • 14. Nomoto R, Mishima A, Kobayashi K, McCabe J, Darvell B, Watts D, Momoi Y, Hirano S. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems. Dent Mater J, 2008, 24: 141-147.
  • 15. Camps J, Pommel L, Bukiet F. Evaluation of periapical lesion healing by correction of gray values. J. Endod., 2004, 30: 762-766.
  • 16. Santos MC AC, Khoury H, Braz R. Evaluation of radiopacities two compomers. Rev Odontol Univ Santo Amaro, 1999, 40: 5
  • 17. Aguiar CM AK, Santos MC, Becerra SR. Diagnosis of caries dental. Rev Odontol Univ Santo Amaro, 1998, 3: 31.
  • 18. Braga SR, Vasconcelos BT, Macedo MR, Martins VR, Sobral MA. Reasons for placement and replacement of direct restorative materials in Brazil. Quintessence Int, 2007, 38: e189-194.
  • 19. Salzedas LM LM, de Oliveira Filho AB. Radiopacity of restorative materials using digital images. J Appl Oral Sci, 2006, 14: 52.
  • 20. Kuter B, Ece E. Restoratif cam iyonomer simanlarin radyoopasitelerinin iki farkli teknikle karşilaştirilmasi. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2010: 1-6
  • 21. Motohashi J, Furukawa S, Shimoda S, TSURUMOTO A. ISO 4049 Dentistry-polymer-based filling, restorative and luting materials ISO 4049 Dentistry-polymer-based filling, restorative and luting materials, 1-22, 2000. J Hard Tissue Biol, 2010, 19: 195-202.
  • 22. Murchison DF, Charlton DG, Moore WS. Comparative radiopacity of flowable resin composites. Quintessence Int., 1999, 30.
  • 23. Watts D, McCabe J. Aluminium radiopacity standards for dentistry: an international survey. J. Dent., 1999, 27: 73-78.
  • 24. Williams J, Billington R. The radiopacity of glass ionomer dental materials. J Oral Rehabil., 1990, 17: 245-248.
  • 25. El-Mowafy O, Brown J, McComb D. Radiopacity of direct ceramic inlay restoratives. J. Dent., 1991, 19: 366-368.
  • 26. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J, 2012: 47-53
  • 27. Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc., 2003, 69: 516-521.
  • 28. Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent, 2004, 29: 677-684.
  • 29. Nakamura T, Tanaka H, Kawamura Y, Wakabayashi K. Translucency of glass‐fibre‐reinforced composite materials. J Oral Rehabil., 2004, 31: 817-821.
  • 30. Jandt KD, Al-Jasser AM, Al-Ateeq K, Vowles RW, Allen GC. Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites. Dent Mater J, 2002, 18: 429-435.
  • 31. Tsuge T. Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J Oral Sci, 2009, 51: 223-230.
  • 32. Yildirim D, Ermis RB, Gormez O, Yildiz G. Comparison of radiopacities of different flowable resin composites. JOMR, 2014, 2: 21.
  • 33. Ergücü Z, Türkün L, Önem E, Güneri P. Comparative radiopacity of six flowable resin composites. Oper. Dent., 2010, 35: 436-440.
Year 2020, Volume: 30 Issue: 3, 418 - 423, 15.07.2020
https://doi.org/10.17567/ataunidfd.652351

Abstract

References

  • 1. Jackson RD, Morgan M. The new posterior resins and: a simplified placement technique. J. Am. Dent. Assoc., 2000, 131: 375-383.
  • 2. Stephen CB. A characterization of first-generation flowable composites. JADA, 1998, 129: 567-577.
  • 3. Summitt JB, Robbins JW, Hilton TJ, Schwartz RS, Dos Santos Jr J. Fundamentals of operative dentistry: a contemporary approach. Baskı. Quintessence Pub., 2006.
  • 4. Cadenaro M, Marchesi G, Antoniolli F, Davidson C, Dorigo EDS, Breschi L. Flowability of composites is no guarantee for contraction stress reduction. Dent Mater J, 2009, 25: 649-654.
  • 5. Lee I-B, Min S-H, Kim S-Y, Ferracane J. Slumping tendency and rheological properties of flowable composites. Dent Mater J, 2010, 26: 443-448.
  • 6. Imperiano MT, Khoury HJ, Pontual MLA, Montes MAJR, Silveira MMF. Comparative radiopacity of four lowviscosity composites. Braz. J. Oral Sci., 2007, 6: 1278-1282.
  • 7. Bouschlicher M, Cobb D, Boyer D. Radiopacity of compomers, flowable and conventional resin composites for posterior restorations. Oper. Dent., 1999, 24: 20-25.
  • 8. Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater J, 1991, 7: 114-117.
  • 9. Koliniotou-Koumpia E, Dionysopoulos P, Papadimitriou S, Koumbia E, Dionysopoulos D. Sealing effectiveness of two liners and one flowable composite resin in vivo in class V restorations. Hellenic Dent. J., 2006, 16: 11-16.
  • 10. Marouf N, Sidhu S. A study on the radiopacity of different shades of resin-modified glass-ionomer restorative materials. Oper. Dent., 1998, 23: 10-14.
  • 11. Hara AT, Serra MC, AL RJ. Radiopacity of glass-ionomer/composite resin hybrid materials. Braz Dent J, 2001.
  • 12. Chan D, Titus H, Chung K-H, Dixon H, Wellinghoff S, Rawls H. Radiopacity of tantalum oxide nanoparticle filled resins. Dent Mater J, 1999, 15: 219-222.
  • 13. Van Dijken JW, Wing KR, Ruyter IE. An evaluation of the radiopacity of composite restorative materials used in Class I and Class II cavities. Acta Odontol. Scand., 1989, 47: 401-407.
  • 14. Nomoto R, Mishima A, Kobayashi K, McCabe J, Darvell B, Watts D, Momoi Y, Hirano S. Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems. Dent Mater J, 2008, 24: 141-147.
  • 15. Camps J, Pommel L, Bukiet F. Evaluation of periapical lesion healing by correction of gray values. J. Endod., 2004, 30: 762-766.
  • 16. Santos MC AC, Khoury H, Braz R. Evaluation of radiopacities two compomers. Rev Odontol Univ Santo Amaro, 1999, 40: 5
  • 17. Aguiar CM AK, Santos MC, Becerra SR. Diagnosis of caries dental. Rev Odontol Univ Santo Amaro, 1998, 3: 31.
  • 18. Braga SR, Vasconcelos BT, Macedo MR, Martins VR, Sobral MA. Reasons for placement and replacement of direct restorative materials in Brazil. Quintessence Int, 2007, 38: e189-194.
  • 19. Salzedas LM LM, de Oliveira Filho AB. Radiopacity of restorative materials using digital images. J Appl Oral Sci, 2006, 14: 52.
  • 20. Kuter B, Ece E. Restoratif cam iyonomer simanlarin radyoopasitelerinin iki farkli teknikle karşilaştirilmasi. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 2010: 1-6
  • 21. Motohashi J, Furukawa S, Shimoda S, TSURUMOTO A. ISO 4049 Dentistry-polymer-based filling, restorative and luting materials ISO 4049 Dentistry-polymer-based filling, restorative and luting materials, 1-22, 2000. J Hard Tissue Biol, 2010, 19: 195-202.
  • 22. Murchison DF, Charlton DG, Moore WS. Comparative radiopacity of flowable resin composites. Quintessence Int., 1999, 30.
  • 23. Watts D, McCabe J. Aluminium radiopacity standards for dentistry: an international survey. J. Dent., 1999, 27: 73-78.
  • 24. Williams J, Billington R. The radiopacity of glass ionomer dental materials. J Oral Rehabil., 1990, 17: 245-248.
  • 25. El-Mowafy O, Brown J, McComb D. Radiopacity of direct ceramic inlay restoratives. J. Dent., 1991, 19: 366-368.
  • 26. Dukic W, Delija B, Derossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J, 2012: 47-53
  • 27. Attar N, Tam LE, McComb D. Flow, strength, stiffness and radiopacity of flowable resin composites. J Can Dent Assoc., 2003, 69: 516-521.
  • 28. Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent, 2004, 29: 677-684.
  • 29. Nakamura T, Tanaka H, Kawamura Y, Wakabayashi K. Translucency of glass‐fibre‐reinforced composite materials. J Oral Rehabil., 2004, 31: 817-821.
  • 30. Jandt KD, Al-Jasser AM, Al-Ateeq K, Vowles RW, Allen GC. Mechanical properties and radiopacity of experimental glass-silica-metal hybrid composites. Dent Mater J, 2002, 18: 429-435.
  • 31. Tsuge T. Radiopacity of conventional, resin-modified glass ionomer, and resin-based luting materials. J Oral Sci, 2009, 51: 223-230.
  • 32. Yildirim D, Ermis RB, Gormez O, Yildiz G. Comparison of radiopacities of different flowable resin composites. JOMR, 2014, 2: 21.
  • 33. Ergücü Z, Türkün L, Önem E, Güneri P. Comparative radiopacity of six flowable resin composites. Oper. Dent., 2010, 35: 436-440.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Dentistry
Journal Section Araştırma Makalesi
Authors

Dt. Kübra Cantürk This is me 0000-0002-1140-2262

Merve Nur Yılmaz This is me 0000-0002-8037-6408

Furkan Cantürk This is me 0000-0002-7968-6855

Nurcan Özakar İlday This is me 0000-0003-4023-6723

Nilgün Seven This is me 0000-0003-0690-2200

Publication Date July 15, 2020
Published in Issue Year 2020 Volume: 30 Issue: 3

Cite

APA Cantürk, D. K., Yılmaz, M. N., Cantürk, F., Özakar İlday, N., et al. (2020). BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 30(3), 418-423. https://doi.org/10.17567/ataunidfd.652351
AMA Cantürk DK, Yılmaz MN, Cantürk F, Özakar İlday N, Seven N. BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. July 2020;30(3):418-423. doi:10.17567/ataunidfd.652351
Chicago Cantürk, Dt. Kübra, Merve Nur Yılmaz, Furkan Cantürk, Nurcan Özakar İlday, and Nilgün Seven. “BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30, no. 3 (July 2020): 418-23. https://doi.org/10.17567/ataunidfd.652351.
EndNote Cantürk DK, Yılmaz MN, Cantürk F, Özakar İlday N, Seven N (July 1, 2020) BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30 3 418–423.
IEEE D. K. Cantürk, M. N. Yılmaz, F. Cantürk, N. Özakar İlday, and N. Seven, “BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI”, Ata Diş Hek Fak Derg, vol. 30, no. 3, pp. 418–423, 2020, doi: 10.17567/ataunidfd.652351.
ISNAD Cantürk, Dt. Kübra et al. “BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 30/3 (July 2020), 418-423. https://doi.org/10.17567/ataunidfd.652351.
JAMA Cantürk DK, Yılmaz MN, Cantürk F, Özakar İlday N, Seven N. BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. 2020;30:418–423.
MLA Cantürk, Dt. Kübra et al. “BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, vol. 30, no. 3, 2020, pp. 418-23, doi:10.17567/ataunidfd.652351.
Vancouver Cantürk DK, Yılmaz MN, Cantürk F, Özakar İlday N, Seven N. BEŞ FARKLI AKICI KOMPOZİT REZİNİN RADYOOPASİTELERİNİN KARŞILAŞTIRILMASI. Ata Diş Hek Fak Derg. 2020;30(3):418-23.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.