Research Article
BibTex RIS Cite

Suzuki - $F(\psi-\phi)-\alpha$ type fixed point theorem on quasi metric spaces

Year 2020, , 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Abstract

In this paper, we obtain a $\alpha$-Suzuki  fixed point theorem by using $C$ - class function on  quasi metric spaces. Also we give an example which supports our main theorem.

References

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
Year 2020, , 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Abstract

References

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
There are 7 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Venigalla Madhulatha Himabindu

Publication Date March 31, 2020
Published in Issue Year 2020

Cite

Cited By

Hu's characterization of metric completeness revisited
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.1090077