Research Article
BibTex RIS Cite

İklime Duyarlı Mekânsal Tasarım Stratejilerinin Geliştirilmesi İçin Bir Çerçeve Önerisi: Kırklareli Kent Merkezi Örneği

Year 2025, Volume: 8 Issue: 1, 113 - 136
https://doi.org/10.53353/atrss.1518110

Abstract

İklim değişikliği günümüz kentlerinin yaşanılabilirliğini etkileyen en temel sorunlarından biri haline gelmiştir. İşsizlik, kaynaklara erişim gibi ekonomik, sosyal, politik ve teknoloji ve altyapıya bağlı olarak artan nüfus hareketleri beraberinde kentsel dokuda yoğunluk artışına neden olmaktadır. Kentte dikey ve yatay yönde gerçekleşen bu yapısal alan artışı, özellikle yeşil alandan yoksun kentlerde, fiziki mekanlarının boşluksuz yapılı çevreye dönüşmesine neden olmaktadır. Yoğunlaşan kentsel dokularda oluşan mikro iklim bölgelerinde mevcut durumdan farklı sıcaklıklar, konfor düzeyini engelleyecek termal değerler gözlemlenmektedir. Rekreasyonel alanlar bu sıcaklık stresini engelleyebilecek en temel çözümlerden biridir. Bu çalışmada kentsel yeşil alanların mikro iklime düzenlyici etkisi kent planlamada tasarım unsuru olarak değerlendirilmiştir. Bu kapsamda ise iklime duyarlı mekansal tasarım stratejilerinin geliştirilebilmesi için bir çalışma yaklaşımı önerilmektedir. Sıcaklık, rüzgar, temel iklimsel veriler ile Kırklareli kent merkezindeki mikro bölgeler tespit edilmiş ve rekreasyon alanları ile karşılaştırmalı değerlendirmeler yapılmıştır. Çalışmanın temel iki katkı sunması hedeflenmiştir: (1) kent ve mahalle ölçeğinde temel iklimsel durum ve sorunlar belirlenmiştir, (2) iklime duyarlı mekansal tasarım stratejileri ile kentsel ve rekreasyonel temalarda öneriler geliştirilmiştir.

Project Number

Bulunmamaktadır

References

  • Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates, Building and Environment, 43(4), 480-493, https://doi.org/ 10.1016 /j.buildenv.2006.10.055.
  • Alonso, L., & Renard, F. (2020). A New approach for understanding urban microclimate by ıntegrating complementary predictors at different scales in regression and machine learning models. Remote Sensing, 12(15), Article 15. https://doi.org/10.3390/rs12152434
  • Antoniou, N., Montazeri, H., Neophytou, M., & Blocken, B. (2019). CFD simulation of urban microclimate: Validation using high-resolution field measurements. Science of The Total Environment, 695, 133743. https://doi.org/10.1016/j.scitotenv.2019.133743
  • Boduch, M., & Fincher, W. (2010). Standards of human comfort: relative and absolute. Austin: The University of Texas.
  • Brager, G. S., & de Dear, R. (2001). Climate, comfort, natural ventilation: A new adaptive comfort standard for ASHRAE standard 55. UC Berkeley: Center for the Built Environment, 2–18.
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.
  • Burdett, M. (2020). Urban microclimates: Causes. GeographyCaseStudy.Com. https://geographycase study. com/urban-microclimates-causes/
  • Cao, S., Wang, Y., Ni, Z., & Xia, B. (2022). Effects of blue-green ınfrastructures on the microclimate in an urban residential area under hot weather. Frontiers in Sustainable Cities, 4. https://doi.org/10. 3389/frsc.2022.824779.
  • CG. (2013). Urban Microclimates. Retrieved April 13, 2024, from https://www.coolgeography.co.uk/A-level/AQA/Year%2013/Weather%20and%20climate/Microclimates/Urban_climates.htm
  • Çetin, M., Adiguzel, F., Gungor, S. , Kaya, E., Sancar, M.C., (2019). Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Qual Atmos Health 12, 1103–1112 https://doi.org/10.1007/s11869-019-00727-3
  • Chen, A., Yao, X. A., Sun, R., & Chen, L. (2014). Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry & Urban Greening, 13(4), 646-654. https://doi.org /10.1016/j.ufug.2014.07.006
  • Cheng, C. (2013). Social vulnerability, green infrastructure, urbanization and climate change-induced flooding: A risk assessment for the Charles River watershed, Massachusetts, USA [Doctoral Thesis]. University of Massachusetts.
  • ClimateOneBuilding. (2023). Turkey-EPW Database. https://climate.onebuilding.org/WMO_Region_6 _Europe/TUR_Turkey/index.html
  • Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28(2), 271–283. https://doi.org/10.1007/s10980-012-9833-1
  • Corp, T. A. R. (1980). Regional Guidelines for Building Passive Energy Conserving Homes. US Dept.of Housing and Urban Development.
  • D’Ambrosio Alfano, F. R., Palella, B. I., & Riccio, G. (2013). On the transition thermal discomfort to heat stress as a function of the PMV value. Industrial Health, 51(3), 285–296. https://doi.org/10. 2486/indhealth.2012-0163
  • DB. (2021). Night-time purging. Designing Buildings: The Construction Wiki; https://www.designingbuildings.co.uk/wiki/Night-time_purging
  • De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1), 145–167.
  • Dear, R. (2011). Recent enhancements to the adaptive comfort standard in ASHRAE. 55-2010, 2–8.
  • Deilami, K., Kamruzzaman, Md., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. https://doi.org/10.1016/j.jag.2017.12.009
  • Du, M., & Zhang, X. (2020). Urban greening: A new paradox of economic or social sustainability? Land Use Policy, 92, 104487. https://doi.org/10.1016/j.landusepol.2020.104487
  • Du, X., Bokel, R., & van den Dobbelsteen, A. (2019). Spatial configuration, building microclimate and thermal comfort: A modern house case. Energy and Buildings, 193, 185–200. doi: 10.1016/j.enbuild. 2019.03.038
  • Dyvia, H. A., & Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conference Series: Earth and Environmental Science, 622(1), 012019. https://doi.org/10.1088/1755-1315/622/1/012019
  • Emmanuel, R., & Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment, 53, 137–149. https://doi.org/10.1016/j.buildenv.2012.01.020
  • Escourrou, P. (1989). Les critères d’étude de biométéorologie humaine. Les Critères d’étude de Biométéorologie Humaine. 14, 21–30.
  • Fanger. (2024). The fanger method: Estimation of thermal comfort. https://www.ergonautas.upv.es/e rgoniza/app_en/land/index.html?method=fanger
  • Forthofer, J. M., & Butler, B. (2007). Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field. 046, 123–127.
  • Forthofer, J. M., Butler, B. W., McHugh, C. W., Finney, M. A., Bradshaw, L. S., Stratton, R. D., Shannon, K. S., & Wagenbrenner, N. S. (2014a). A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. International Journal of Wildland Fire, 23, 982–994. https://doi.org/10.1071/WF12090
  • Forthofer, J. M., Butler, B. W., & Wagenbrenner, N. S. (2014b). A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management: Part I. Model formulation and comparison against measurements. International Journal of Wildland Fire, 23. https://doi.org/10.1071/WF12089
  • Gao, C. (2008). Calucation of Predicted mean Vote (PMV), and Predicted Percentage Dissatisfied (PPD). https://www.eat.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
  • Givoni, B. (1991). Impact of planted areas on urban environmental quality: A review, Atmospheric Environment. Part B. Urban Atmosphere, Volume 25, Issue 3, Pages 289-299, ISSN 0957-1272, https://doi.org/10.1016/0957-1272(91)90001-U
  • GSG. (2023). Wind—Air Flow. https://lufft-messtechnik.com/en/principles-of-measurement/wind-air flow.
  • Gupta, K., Kumar, P., Pathan, S. K., & Sharma, K. P. (2012). Urban neighborhood green ındex–a measure of green spaces in urban areas. Landscape and Urban Planning, 105(3), 325-335. https://doi.org/10. 1016/j.landurbplan.2012.01.003
  • Gündoğdu, H. M., Tok, E., & Özkök, M. K. (2019). Planlama sisteminde iklim değişikliği duyarlı stratejilerin kademeli olarak değerlendirilmesi. In Y. Aksoy (Ed.), İklim Değişikliği ve Kentler—Yapısal Çevre ve Yeşil Alanlar (pp. 324–347). DAKAM.
  • He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B., & Li, L.G. (2019). An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustainable Cities and Society, 44, 416–427. https://doi.org/10. 1016/j.scs.2018.10.049
  • Javanroodi, K., & Nik, V. M. (2019). Impacts of microclimate conditions on the energy performance of buildings in urban areas. Buildings, 9(8), Article 8. https://doi.org/10.3390/buildings9080189
  • Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586-596.
  • Kafy, A.A., Abdullah-Al-Faisal, Rahman, Md. S., Islam, M., Al Rakib, A., Islam, Md. A., Khan, Md. H. H., Sikdar, Md. S., Sarker, Md. H. S., Mawa, J., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. https://doi.org/10.1016/j.scs.2020.102542
  • Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Science of The Total Environment, 779, 146389. https://doi.org/10. 1016/j.scitotenv.2021.146389 Kirkby, N. F. (2011). Mollier diagram. In thermopedia. Begel House Inc. https://dx.doi.org/10.1615/AtoZ.m.mollier_diagram
  • Kousis, I., Pigliautile, I., & Pisello, A. L. (2021). Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Scientific Reports, 11(1), 9732. https://doi.org/10. 1038/s41598-021-88344-y
  • Kruize, H., van Der Vliet, N., Staatsen, B., Bell, R., Chiabai, A., Muiños, G., ... & Stegeman, I. (2019). Urban green space: creating a triple win for environmental sustainability, health, and health equity through behavior change. International Journal of Environmental Research and Public Health, 16(22), 4403 https://doi.org/10.3390/ijerph16224403
  • Kuru, A. (2024) Investigating the neighborhood effect of urban morphological metrics on summertime land surface temperature variations in Istanbul, Turkey. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-024-05553-4
  • Land Copernicus. (2023). Urban Atlas Street Tree Layer 2018 (vector), Europe, 6-yearly. https://land. copernicus.eu/en/products/urban-atlas/street-tree-layer-stl-2018
  • Larsen, T. S., & Heiselberg, P. (2008). Single-sided natural ventilation driven by wind pressure and temperature difference. Energy and Buildings, 40(6), 1031–1040. https://doi.org/10.1016/j.enbuild. 2006.07.012
  • Lee, B., Lee, M., Zhang, P., Tessier, A., Saakes, D., & Khan, A. (2021). Socio-spatial comfort: using vision-based analysis to ınform user-centred human-building ınteractions. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW3), 238:1-238:33. doi: 10.1145/3432937
  • Lee, M.H., & Han, S.H. (2021). Utilization of the evaluation system for spatial comfort toward multi-layered public hanok facilities. Designs, 5(4), 79. doi: 10.3390/designs5040079
  • Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A Review of urban microclimate research based on citespace and vosviewer analysis. International Journal of Environmental Research and Public Health, 19(8), 4741. https://doi.org/10.3390/ijerph19084741
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  • Li, X., Chakraborty, T., & Wang, G. (2023). Comparing land surface temperature and mean radiant temperature for urban heat mapping in Philadelphia. Urban Climate, 51, 101615. https://doi.org/10. 1016/j.uclim.2023.101615.
  • Lin, B. S., Cho, Y. H., & Hsieh, C. I. (2021). Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry & Urban Greening, 62, 127137.
  • Lin, Y., Ichinose, T., Yamao, Y., & Mouri, H. (2020). Wind velocity and temperature fields under different surface heating conditions in a street canyon in wind tunnel experiments. Building and Environment, 168, 106500. https://doi.org/10.1016/j.buildenv.2019.106500
  • Mangiameli, M., Mussumeci, G., & Gagliano, A. (2022). Evaluation of the urban microclimate in catania using multispectral remote sensing and GIS Technology. Climate, 10(2), Article 2. https://doi.org/10. 3390/cli10020018
  • Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76–84. https://doi.org/10. 1007/s004840050119
  • MGM. (2016a). Aydeniz İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016b). De Martone Kuraklık İndeksine Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016c). Erinç İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016d). Thorntwaite İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2021). Standart Yağış İndeksi Metoduna Göre 2021 Yılı Meteorolojik Kuraklık Durumu [Map]. T.C. Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/veridegerlendirme/kuraklik-analizi.aspx
  • Mirza, E., & Topay, M. (2018). İklimsel konfor ve planlama. In H. Babacan (Ed.), Mimarlık Bilimlerinde Güncel Akademik Çalışmalar (pp. 281–291). Gece Kitaplığı.
  • Müftüoğlu, V. (2008). Kentsel açık-yeşil alan karar ve uygulamalarının imar mevzuatı kapsamında Ankara kenti örneğinde irdelenmesi [Msc Thesis]. Ankara University.
  • Newman, P., & Kenworthy, J. (1999). Sustainability and cities: overcoming automobile dependence. Island Press.
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502
  • Olgyay, V. (2015). Design with climate: bioclimatic approach to architectural regionalism. Priceton University Press.
  • Önen, E. (2015). Kentsel açık-yeşil alan stratejilerinin belirlenmesi: Güzelbahçe (İzmir) ilçesi örneği [Doctoral Thesis]. Ege University.
  • Özkök, M. K. (2016). Kentsel yerleşimin, kentsel politikalar ve sürdürülebilir planlama yaklaşımı kapsamında değerlendirilmesi: kırklareli örneği, [Msc Thesis]. Yıldız Technical University.
  • Özkök, M. K. (2023). Büyük veri tabanlı planlama anlayışı: kentteki kullanıcı örüntülerini çözümlemede yeni teknikler ve tartışmalar. Dünya Şehircilik Günü 47. Kolokyumu, Ankara.
  • Parizi, S. M., & Kazeminiya, A. (2015). Evaluation of human-oriented transport in city hall transportation projects approach to sustainable case study of the Kerman City Hall. Journal of Building Construction and Planning Research, 3(3), 149-161.
  • Pesaresi, M., & Politis, P. (2022). GHS-BUILT-H R2022A - GHS building height, derived from AW3D30, SRTM30, and Sentinel2 composite (2018)—OBSOLETE RELEASE (OBSOLETE RELEASE. European Commission, Joint Research Centre (JRC) [Dataset]) [dataset]. European Commission, Joint Research Centre (JRC). https://doi.org/10.2905/CE7C0310-9D5E-4AEB-B99E-4755F6062557
  • Rahman, M. N., Rony, M. R. H., Jannat, F. A., Chandra Pal, S., Islam, M. S., Alam, E., & Islam, A. R. M. T. (2022). Impact of urbanization on urban heat ısland ıntensity in major districts of Bangladesh using remote sensing and geo-spatial tools. Climate, 10(1), Article 1. https://doi.org/10.3390/cli10010003
  • Ramyar, R., Ackerman, A., & Johnston, D. M. (2021). Adapting cities for climate change through urban green infrastructure planning. Cities, 117, 103316. https://doi.org/10.1016/j.cities.2021.103316
  • Ramyar, R., Ramyar, A., Kialashaki, Y., Bryant, M., & Ramyar, H. (2019). Exploring reconfiguration scenarios of high-density urban neighborhoods on urban temperature–The case of Tehran (Iran). Urban Forestry & Urban Greening, 44, 126398. https://doi.org/10.1016/j.ufug.2019.126398
  • Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 63, 102459. https://doi.org/10. 1016/j.scs.2020.102459
  • Saaroni, H., Ben-Dor, E., Bitan, A., & Potchter, O. (2000). Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48(1), 1–18. https://doi.org/10.1016/S0169-2046(99)00075-4
  • Sandström, U. G., Angelstam, P., & Khakee, A. (2006). Urban comprehensive planning–identifying barriers for the maintenance of functional habitat networks. Landscape and Urban Planning, 75(1-2), 43-57.
  • Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of The Total Environment, 512–513, 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060
  • Sınmaz, S., & Özkök, M. K. (2022). Yaya erişilebilirliği çerçevesinde kentlerin mekânsal engellilik düzeyini ölçme ve değerlendirme sisteminin geliştirilmesi: Kırklareli Merkez İlçe Örneği (No. KLÜBAP-216). Kırklareli: Kirklareli University.
  • Sinemillioglu, M. O., Akin, C. T., & Karacay, N. (2010). Relationship between green areas and urban conservation in historical areas and its reflections: case of Diyarbakir City, Turkey. European Planning Studies, 18(5), 775-789.
  • Smith, Z. (2021). Spatial Comfort and Stress. Retrieved September 1, 2022, from https://www.cuanschutz. edu/centers/national-mental-health-innovation/news-media/nmhic-blog/nmhic-blog/spatial-com fort-and-stress
  • Sturiale, L., & Scuderi, A. (2018) The evaluation of green ınvestments in urban areas: a proposal of an eco-social-green model of the city. Sustainability. 10(12):4541. https://doi.org/10.3390/su10124541
  • Teodoreanu, E. (2016). Thermal comfort ındex. Present Environment and Sustainable Development, 10(2). https://doi.org/10.1515/pesd-2016-0029
  • Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640. https://doi.org/10.1016/j. rser.2017.05.248
  • TURKSTAT. (2022). Address Based Population Registration System Database. http://www.tuik.gov. tr/Pre TabloArama.do?metod=search&araType=vt
  • Uehara, K., Murakami, S., Oikawa, S., & Wakamatsu, S. (2000). Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment, 34(10), 1553–1562. https://doi.org/10.1016/S1352-2310(99)00410-0
  • USGS. (2023). EarthExplorer. https://earthexplorer.usgs.gov/
  • Ülger, F.N., & Önder, S. (2006) Kayseri kenti açık-yeşil alanlarının nitelik ve nicelik açısından irdelenmesi, Selçuk Ü. Ziraat Fakültesi Dergisi, 20 (38): 108-118.
  • Vecchi, R. D., Sorgato, M. J., Pacheco, M., Cândido, C., & Lamberts, R. (2015). ASHRAE 55 adaptive model application in hot and humid climates: The Brazilian case. Architectural Science Review, 58(1), 93–101. https://doi.org/10.1080/00038628.2014.981145
  • Verani, E., Pozoukidou, G., & Sdoukopoulos, A. (2015). The effect of urban density, green spaces and mobility patterns in cities’ environmental quality: An empirical study of the metropolitan area of Thessaloniki. Spatium, 8-17. DOI: 10.2298/SPAT1533008V
  • Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., & Butler, B. W. (2016). Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmospheric Chemistry and Physics, 16(8), 5229–5241. https://doi.org/10.5194/acp-16-5229-2016
  • Watson, D., & Labs, K. (1983). Climatic Design: Energy-Efficient Building Principles and Practices. McGraw-Hill.
  • Wu, J., Wang, M., Li, W., Peng, J., & Huang, L. (2015). Impact of urban green space on residential housing prices: Case study in Shenzhen. Journal of Urban Planning and Development, 141(4), 05014023. https://doi.org/10.1061/(ASCE)UP.1943-5444.00002
  • Yan, Y. Y. (2005). Climate comfort indices. Encyclopedia of World Climatology, 227–231. https://doi.org/10. 1007/1-4020-3266-8_44
  • Yang, S., Wang, L., Stathopoulos, T., & Marey, A. M. (2023). Urban microclimate and its impact on built environment – A review. Building and Environment, 238, 110334. https://doi.org/10.1016/j. buildenv.2023.110334
  • Yao, L., Li, T., Xu, M., & Xu, Y. (2020). How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban Forestry & Urban Greening, 52, 126704. https://doi.org/10.1016/j.ufug.2020.126704
  • Zhang, L., Feng, Y., Meng, Q., & Zhang, Y. (2015). Experimental study on the building evaporative cooling by using the Climatic Wind Tunnel. Energy and Buildings, 104, 360–368. https://doi.org/10. 1016/j.enbuild.2015.07.038

A Framework Proposal for the Developing Climate Sensitive Spatial Design Strategies: The Case of Kırklareli City Center

Year 2025, Volume: 8 Issue: 1, 113 - 136
https://doi.org/10.53353/atrss.1518110

Abstract

Climate change has emerged as a major challenge affecting urban sustainability. Increased population mobility due to social and economic factors has led to an expansion in urban density. This growth in urban space has resulted in the transformation of physical spaces into built environments lacking green areas. In the microclimate zones formed in dense urban areas, temperatures different from the current situation and thermal values that prevent the comfort level are observed. One of the most basic solutions that can prevent this temperature stress is the creation of recreational areas. In this study, the regulating effect of urban green spaces on microclimate is evaluated as a design element in urban planning. In this context, a study approach is proposed to develop climate-sensitive spatial design strategies. Micro-regions in the city center of Kırklareli are identified and comparative evaluations are made with recreation areas. The study aims to make two main contributions: (1) basic climatic conditions and problems are identified at the city and neighborhood scale, and (2) climate-sensitive spatial design strategies and recommendations are developed in urban and recreational themes.

Project Number

Bulunmamaktadır

References

  • Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates, Building and Environment, 43(4), 480-493, https://doi.org/ 10.1016 /j.buildenv.2006.10.055.
  • Alonso, L., & Renard, F. (2020). A New approach for understanding urban microclimate by ıntegrating complementary predictors at different scales in regression and machine learning models. Remote Sensing, 12(15), Article 15. https://doi.org/10.3390/rs12152434
  • Antoniou, N., Montazeri, H., Neophytou, M., & Blocken, B. (2019). CFD simulation of urban microclimate: Validation using high-resolution field measurements. Science of The Total Environment, 695, 133743. https://doi.org/10.1016/j.scitotenv.2019.133743
  • Boduch, M., & Fincher, W. (2010). Standards of human comfort: relative and absolute. Austin: The University of Texas.
  • Brager, G. S., & de Dear, R. (2001). Climate, comfort, natural ventilation: A new adaptive comfort standard for ASHRAE standard 55. UC Berkeley: Center for the Built Environment, 2–18.
  • Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.
  • Burdett, M. (2020). Urban microclimates: Causes. GeographyCaseStudy.Com. https://geographycase study. com/urban-microclimates-causes/
  • Cao, S., Wang, Y., Ni, Z., & Xia, B. (2022). Effects of blue-green ınfrastructures on the microclimate in an urban residential area under hot weather. Frontiers in Sustainable Cities, 4. https://doi.org/10. 3389/frsc.2022.824779.
  • CG. (2013). Urban Microclimates. Retrieved April 13, 2024, from https://www.coolgeography.co.uk/A-level/AQA/Year%2013/Weather%20and%20climate/Microclimates/Urban_climates.htm
  • Çetin, M., Adiguzel, F., Gungor, S. , Kaya, E., Sancar, M.C., (2019). Evaluation of thermal climatic region areas in terms of building density in urban management and planning for Burdur, Turkey. Air Qual Atmos Health 12, 1103–1112 https://doi.org/10.1007/s11869-019-00727-3
  • Chen, A., Yao, X. A., Sun, R., & Chen, L. (2014). Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry & Urban Greening, 13(4), 646-654. https://doi.org /10.1016/j.ufug.2014.07.006
  • Cheng, C. (2013). Social vulnerability, green infrastructure, urbanization and climate change-induced flooding: A risk assessment for the Charles River watershed, Massachusetts, USA [Doctoral Thesis]. University of Massachusetts.
  • ClimateOneBuilding. (2023). Turkey-EPW Database. https://climate.onebuilding.org/WMO_Region_6 _Europe/TUR_Turkey/index.html
  • Connors, J. P., Galletti, C. S., & Chow, W. T. L. (2013). Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28(2), 271–283. https://doi.org/10.1007/s10980-012-9833-1
  • Corp, T. A. R. (1980). Regional Guidelines for Building Passive Energy Conserving Homes. US Dept.of Housing and Urban Development.
  • D’Ambrosio Alfano, F. R., Palella, B. I., & Riccio, G. (2013). On the transition thermal discomfort to heat stress as a function of the PMV value. Industrial Health, 51(3), 285–296. https://doi.org/10. 2486/indhealth.2012-0163
  • DB. (2021). Night-time purging. Designing Buildings: The Construction Wiki; https://www.designingbuildings.co.uk/wiki/Night-time_purging
  • De Dear, R., & Brager, G. S. (1998). Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions, 104(1), 145–167.
  • Dear, R. (2011). Recent enhancements to the adaptive comfort standard in ASHRAE. 55-2010, 2–8.
  • Deilami, K., Kamruzzaman, Md., & Liu, Y. (2018). Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation, 67, 30–42. https://doi.org/10.1016/j.jag.2017.12.009
  • Du, M., & Zhang, X. (2020). Urban greening: A new paradox of economic or social sustainability? Land Use Policy, 92, 104487. https://doi.org/10.1016/j.landusepol.2020.104487
  • Du, X., Bokel, R., & van den Dobbelsteen, A. (2019). Spatial configuration, building microclimate and thermal comfort: A modern house case. Energy and Buildings, 193, 185–200. doi: 10.1016/j.enbuild. 2019.03.038
  • Dyvia, H. A., & Arif, C. (2021). Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network. IOP Conference Series: Earth and Environmental Science, 622(1), 012019. https://doi.org/10.1088/1755-1315/622/1/012019
  • Emmanuel, R., & Krüger, E. (2012). Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Building and Environment, 53, 137–149. https://doi.org/10.1016/j.buildenv.2012.01.020
  • Escourrou, P. (1989). Les critères d’étude de biométéorologie humaine. Les Critères d’étude de Biométéorologie Humaine. 14, 21–30.
  • Fanger. (2024). The fanger method: Estimation of thermal comfort. https://www.ergonautas.upv.es/e rgoniza/app_en/land/index.html?method=fanger
  • Forthofer, J. M., & Butler, B. (2007). Differences in simulated fire spread over Askervein Hill using two advanced wind models and a traditional uniform wind field. 046, 123–127.
  • Forthofer, J. M., Butler, B. W., McHugh, C. W., Finney, M. A., Bradshaw, L. S., Stratton, R. D., Shannon, K. S., & Wagenbrenner, N. S. (2014a). A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. International Journal of Wildland Fire, 23, 982–994. https://doi.org/10.1071/WF12090
  • Forthofer, J. M., Butler, B. W., & Wagenbrenner, N. S. (2014b). A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management: Part I. Model formulation and comparison against measurements. International Journal of Wildland Fire, 23. https://doi.org/10.1071/WF12089
  • Gao, C. (2008). Calucation of Predicted mean Vote (PMV), and Predicted Percentage Dissatisfied (PPD). https://www.eat.lth.se/fileadmin/eat/Termisk_miljoe/PMV-PPD.html
  • Givoni, B. (1991). Impact of planted areas on urban environmental quality: A review, Atmospheric Environment. Part B. Urban Atmosphere, Volume 25, Issue 3, Pages 289-299, ISSN 0957-1272, https://doi.org/10.1016/0957-1272(91)90001-U
  • GSG. (2023). Wind—Air Flow. https://lufft-messtechnik.com/en/principles-of-measurement/wind-air flow.
  • Gupta, K., Kumar, P., Pathan, S. K., & Sharma, K. P. (2012). Urban neighborhood green ındex–a measure of green spaces in urban areas. Landscape and Urban Planning, 105(3), 325-335. https://doi.org/10. 1016/j.landurbplan.2012.01.003
  • Gündoğdu, H. M., Tok, E., & Özkök, M. K. (2019). Planlama sisteminde iklim değişikliği duyarlı stratejilerin kademeli olarak değerlendirilmesi. In Y. Aksoy (Ed.), İklim Değişikliği ve Kentler—Yapısal Çevre ve Yeşil Alanlar (pp. 324–347). DAKAM.
  • He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B., & Li, L.G. (2019). An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustainable Cities and Society, 44, 416–427. https://doi.org/10. 1016/j.scs.2018.10.049
  • Javanroodi, K., & Nik, V. M. (2019). Impacts of microclimate conditions on the energy performance of buildings in urban areas. Buildings, 9(8), Article 8. https://doi.org/10.3390/buildings9080189
  • Kabisch, N., Strohbach, M., Haase, D., & Kronenberg, J. (2016). Urban green space availability in European cities. Ecological Indicators, 70, 586-596.
  • Kafy, A.A., Abdullah-Al-Faisal, Rahman, Md. S., Islam, M., Al Rakib, A., Islam, Md. A., Khan, Md. H. H., Sikdar, Md. S., Sarker, Md. H. S., Mawa, J., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64, 102542. https://doi.org/10.1016/j.scs.2020.102542
  • Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Science of The Total Environment, 779, 146389. https://doi.org/10. 1016/j.scitotenv.2021.146389 Kirkby, N. F. (2011). Mollier diagram. In thermopedia. Begel House Inc. https://dx.doi.org/10.1615/AtoZ.m.mollier_diagram
  • Kousis, I., Pigliautile, I., & Pisello, A. L. (2021). Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Scientific Reports, 11(1), 9732. https://doi.org/10. 1038/s41598-021-88344-y
  • Kruize, H., van Der Vliet, N., Staatsen, B., Bell, R., Chiabai, A., Muiños, G., ... & Stegeman, I. (2019). Urban green space: creating a triple win for environmental sustainability, health, and health equity through behavior change. International Journal of Environmental Research and Public Health, 16(22), 4403 https://doi.org/10.3390/ijerph16224403
  • Kuru, A. (2024) Investigating the neighborhood effect of urban morphological metrics on summertime land surface temperature variations in Istanbul, Turkey. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-024-05553-4
  • Land Copernicus. (2023). Urban Atlas Street Tree Layer 2018 (vector), Europe, 6-yearly. https://land. copernicus.eu/en/products/urban-atlas/street-tree-layer-stl-2018
  • Larsen, T. S., & Heiselberg, P. (2008). Single-sided natural ventilation driven by wind pressure and temperature difference. Energy and Buildings, 40(6), 1031–1040. https://doi.org/10.1016/j.enbuild. 2006.07.012
  • Lee, B., Lee, M., Zhang, P., Tessier, A., Saakes, D., & Khan, A. (2021). Socio-spatial comfort: using vision-based analysis to ınform user-centred human-building ınteractions. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW3), 238:1-238:33. doi: 10.1145/3432937
  • Lee, M.H., & Han, S.H. (2021). Utilization of the evaluation system for spatial comfort toward multi-layered public hanok facilities. Designs, 5(4), 79. doi: 10.3390/designs5040079
  • Li, J., Mao, Y., Ouyang, J., & Zheng, S. (2022). A Review of urban microclimate research based on citespace and vosviewer analysis. International Journal of Environmental Research and Public Health, 19(8), 4741. https://doi.org/10.3390/ijerph19084741
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  • Li, X., Chakraborty, T., & Wang, G. (2023). Comparing land surface temperature and mean radiant temperature for urban heat mapping in Philadelphia. Urban Climate, 51, 101615. https://doi.org/10. 1016/j.uclim.2023.101615.
  • Lin, B. S., Cho, Y. H., & Hsieh, C. I. (2021). Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry & Urban Greening, 62, 127137.
  • Lin, Y., Ichinose, T., Yamao, Y., & Mouri, H. (2020). Wind velocity and temperature fields under different surface heating conditions in a street canyon in wind tunnel experiments. Building and Environment, 168, 106500. https://doi.org/10.1016/j.buildenv.2019.106500
  • Mangiameli, M., Mussumeci, G., & Gagliano, A. (2022). Evaluation of the urban microclimate in catania using multispectral remote sensing and GIS Technology. Climate, 10(2), Article 2. https://doi.org/10. 3390/cli10020018
  • Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2), 76–84. https://doi.org/10. 1007/s004840050119
  • MGM. (2016a). Aydeniz İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016b). De Martone Kuraklık İndeksine Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016c). Erinç İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2016d). Thorntwaite İklim Sınıflandırmasına Göre Türkiye İklimi. T.C. Meteoroloji Genel Müdürlüğü.
  • MGM. (2021). Standart Yağış İndeksi Metoduna Göre 2021 Yılı Meteorolojik Kuraklık Durumu [Map]. T.C. Meteoroloji Genel Müdürlüğü. https://www.mgm.gov.tr/veridegerlendirme/kuraklik-analizi.aspx
  • Mirza, E., & Topay, M. (2018). İklimsel konfor ve planlama. In H. Babacan (Ed.), Mimarlık Bilimlerinde Güncel Akademik Çalışmalar (pp. 281–291). Gece Kitaplığı.
  • Müftüoğlu, V. (2008). Kentsel açık-yeşil alan karar ve uygulamalarının imar mevzuatı kapsamında Ankara kenti örneğinde irdelenmesi [Msc Thesis]. Ankara University.
  • Newman, P., & Kenworthy, J. (1999). Sustainability and cities: overcoming automobile dependence. Island Press.
  • Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1–24. https://doi.org/10.1002/qj.49710845502
  • Olgyay, V. (2015). Design with climate: bioclimatic approach to architectural regionalism. Priceton University Press.
  • Önen, E. (2015). Kentsel açık-yeşil alan stratejilerinin belirlenmesi: Güzelbahçe (İzmir) ilçesi örneği [Doctoral Thesis]. Ege University.
  • Özkök, M. K. (2016). Kentsel yerleşimin, kentsel politikalar ve sürdürülebilir planlama yaklaşımı kapsamında değerlendirilmesi: kırklareli örneği, [Msc Thesis]. Yıldız Technical University.
  • Özkök, M. K. (2023). Büyük veri tabanlı planlama anlayışı: kentteki kullanıcı örüntülerini çözümlemede yeni teknikler ve tartışmalar. Dünya Şehircilik Günü 47. Kolokyumu, Ankara.
  • Parizi, S. M., & Kazeminiya, A. (2015). Evaluation of human-oriented transport in city hall transportation projects approach to sustainable case study of the Kerman City Hall. Journal of Building Construction and Planning Research, 3(3), 149-161.
  • Pesaresi, M., & Politis, P. (2022). GHS-BUILT-H R2022A - GHS building height, derived from AW3D30, SRTM30, and Sentinel2 composite (2018)—OBSOLETE RELEASE (OBSOLETE RELEASE. European Commission, Joint Research Centre (JRC) [Dataset]) [dataset]. European Commission, Joint Research Centre (JRC). https://doi.org/10.2905/CE7C0310-9D5E-4AEB-B99E-4755F6062557
  • Rahman, M. N., Rony, M. R. H., Jannat, F. A., Chandra Pal, S., Islam, M. S., Alam, E., & Islam, A. R. M. T. (2022). Impact of urbanization on urban heat ısland ıntensity in major districts of Bangladesh using remote sensing and geo-spatial tools. Climate, 10(1), Article 1. https://doi.org/10.3390/cli10010003
  • Ramyar, R., Ackerman, A., & Johnston, D. M. (2021). Adapting cities for climate change through urban green infrastructure planning. Cities, 117, 103316. https://doi.org/10.1016/j.cities.2021.103316
  • Ramyar, R., Ramyar, A., Kialashaki, Y., Bryant, M., & Ramyar, H. (2019). Exploring reconfiguration scenarios of high-density urban neighborhoods on urban temperature–The case of Tehran (Iran). Urban Forestry & Urban Greening, 44, 126398. https://doi.org/10.1016/j.ufug.2019.126398
  • Ronchi, S., Salata, S., & Arcidiacono, A. (2020). Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustainable Cities and Society, 63, 102459. https://doi.org/10. 1016/j.scs.2020.102459
  • Saaroni, H., Ben-Dor, E., Bitan, A., & Potchter, O. (2000). Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 48(1), 1–18. https://doi.org/10.1016/S0169-2046(99)00075-4
  • Sandström, U. G., Angelstam, P., & Khakee, A. (2006). Urban comprehensive planning–identifying barriers for the maintenance of functional habitat networks. Landscape and Urban Planning, 75(1-2), 43-57.
  • Santamouris, M. (2015). Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Science of The Total Environment, 512–513, 582–598. https://doi.org/10.1016/j.scitotenv.2015.01.060
  • Sınmaz, S., & Özkök, M. K. (2022). Yaya erişilebilirliği çerçevesinde kentlerin mekânsal engellilik düzeyini ölçme ve değerlendirme sisteminin geliştirilmesi: Kırklareli Merkez İlçe Örneği (No. KLÜBAP-216). Kırklareli: Kirklareli University.
  • Sinemillioglu, M. O., Akin, C. T., & Karacay, N. (2010). Relationship between green areas and urban conservation in historical areas and its reflections: case of Diyarbakir City, Turkey. European Planning Studies, 18(5), 775-789.
  • Smith, Z. (2021). Spatial Comfort and Stress. Retrieved September 1, 2022, from https://www.cuanschutz. edu/centers/national-mental-health-innovation/news-media/nmhic-blog/nmhic-blog/spatial-com fort-and-stress
  • Sturiale, L., & Scuderi, A. (2018) The evaluation of green ınvestments in urban areas: a proposal of an eco-social-green model of the city. Sustainability. 10(12):4541. https://doi.org/10.3390/su10124541
  • Teodoreanu, E. (2016). Thermal comfort ındex. Present Environment and Sustainable Development, 10(2). https://doi.org/10.1515/pesd-2016-0029
  • Toparlar, Y., Blocken, B., Maiheu, B., & van Heijst, G. J. F. (2017). A review on the CFD analysis of urban microclimate. Renewable and Sustainable Energy Reviews, 80, 1613–1640. https://doi.org/10.1016/j. rser.2017.05.248
  • TURKSTAT. (2022). Address Based Population Registration System Database. http://www.tuik.gov. tr/Pre TabloArama.do?metod=search&araType=vt
  • Uehara, K., Murakami, S., Oikawa, S., & Wakamatsu, S. (2000). Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmospheric Environment, 34(10), 1553–1562. https://doi.org/10.1016/S1352-2310(99)00410-0
  • USGS. (2023). EarthExplorer. https://earthexplorer.usgs.gov/
  • Ülger, F.N., & Önder, S. (2006) Kayseri kenti açık-yeşil alanlarının nitelik ve nicelik açısından irdelenmesi, Selçuk Ü. Ziraat Fakültesi Dergisi, 20 (38): 108-118.
  • Vecchi, R. D., Sorgato, M. J., Pacheco, M., Cândido, C., & Lamberts, R. (2015). ASHRAE 55 adaptive model application in hot and humid climates: The Brazilian case. Architectural Science Review, 58(1), 93–101. https://doi.org/10.1080/00038628.2014.981145
  • Verani, E., Pozoukidou, G., & Sdoukopoulos, A. (2015). The effect of urban density, green spaces and mobility patterns in cities’ environmental quality: An empirical study of the metropolitan area of Thessaloniki. Spatium, 8-17. DOI: 10.2298/SPAT1533008V
  • Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., & Butler, B. W. (2016). Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmospheric Chemistry and Physics, 16(8), 5229–5241. https://doi.org/10.5194/acp-16-5229-2016
  • Watson, D., & Labs, K. (1983). Climatic Design: Energy-Efficient Building Principles and Practices. McGraw-Hill.
  • Wu, J., Wang, M., Li, W., Peng, J., & Huang, L. (2015). Impact of urban green space on residential housing prices: Case study in Shenzhen. Journal of Urban Planning and Development, 141(4), 05014023. https://doi.org/10.1061/(ASCE)UP.1943-5444.00002
  • Yan, Y. Y. (2005). Climate comfort indices. Encyclopedia of World Climatology, 227–231. https://doi.org/10. 1007/1-4020-3266-8_44
  • Yang, S., Wang, L., Stathopoulos, T., & Marey, A. M. (2023). Urban microclimate and its impact on built environment – A review. Building and Environment, 238, 110334. https://doi.org/10.1016/j. buildenv.2023.110334
  • Yao, L., Li, T., Xu, M., & Xu, Y. (2020). How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban Forestry & Urban Greening, 52, 126704. https://doi.org/10.1016/j.ufug.2020.126704
  • Zhang, L., Feng, Y., Meng, Q., & Zhang, Y. (2015). Experimental study on the building evaporative cooling by using the Climatic Wind Tunnel. Energy and Buildings, 104, 360–368. https://doi.org/10. 1016/j.enbuild.2015.07.038
There are 94 citations in total.

Details

Primary Language English
Subjects Computer Software, Environmental Assessment and Monitoring, Photogrammetry and Remote Sensing, Recreation Management
Journal Section Research Articles
Authors

Mete Korhan Özkök 0000-0001-8734-3644

Özlem Erdoğan 0000-0003-3474-6954

Project Number Bulunmamaktadır
Publication Date
Submission Date July 17, 2024
Acceptance Date September 12, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Özkök, M. K., & Erdoğan, Ö. (n.d.). A Framework Proposal for the Developing Climate Sensitive Spatial Design Strategies: The Case of Kırklareli City Center. GSI Journals Serie A: Advancements in Tourism Recreation and Sports Sciences, 8(1), 113-136. https://doi.org/10.53353/atrss.1518110

22039