Çimlenmenin Baklagillerin Fonksiyonel Özelliklerine Etkisi
Year 2025,
Volume: 1 Issue: 2, 124 - 135, 25.12.2025
Nejla Dagsuyu
,
Hasim Kelebek
Abstract
Baklagiller, yüksek protein içerikleri, biyoaktif bileşenleri ve fonksiyonel özellikleri sayesinde sürdürülebilir beslenmenin önemli bir bileşenidir. Çimlenme, düşük maliyetli ve çevre dostu bir biyoproses olup, baklagillerde endojen enzimlerin aktivasyonunu tetikleyerek derin biyokimyasal ve fizyolojik değişimlere yol açmaktadır. Bu süreçte depo proteinlerinin hidroliziyle peptitler ve serbest aminoasitler oluşmakta, amilaz aktivitesiyle karbonhidratlar mobilize edilmekte ve fenolik bileşikler ile vitaminlerin biyosentezi artmaktadır. Dolayısıyla çimlenme, protein sindirilebilirliğini iyileştirmekte, aminoasit profillerini değiştirmekte, şeker kompozisyonunu düzenlemekte ve toplam fenolik madde ile antioksidan kapasiteyi artırmaktadır. Ayrıca, enzimatik esmerleşme ve pigment yeniden dağılımına bağlı olarak yapısal ve renk değişiklikleri de meydana gelmektedir. Bu derleme, çimlenmenin baklagillerin besinsel ve fonksiyonel kalitesi üzerindeki etkilerini güncel literatür ışığında kapsamlı biçimde değerlendirmekte; besin öğelerinin biyoyararlanımını artırma ve baklagil bazlı gıdaların sağlık destekleyici özelliklerini güçlendirme potansiyelini vurgulamaktadır. Çimlenmiş baklagiller, fonksiyonel gıda formülasyonları için değerli bir hammadde ve sürdürülebilir gıda sistemlerinin geliştirilmesinde önemli bir araç olarak öne çıkmaktadır.
Thanks
Bu çalışma Nejla Dağsuyu’nun yüksek lisans tezinden üretilmiş olup, Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilimsel Araştırma Koordinasyon Birimi tarafından desteklenmiştir. Proje Numarası: 25103008.
References
-
del Socorro López-Cortez, M., Rosales-Martínez, P., Arellano-Cárdenas, S., & Cornejo-Mazón, M. (2016). Antioxidants properties and effect of processing methods on bioactive compounds of legumes. In Grain legumes. IntechOpen.
-
Kouris-Blazos, A., & Belski, R. (2016). Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pacific journal of clinical nutrition, 25(1), 1-17.
-
Röös, E., Carlsson, G., Ferawati, F., Hefni, M., Stephan, A., Tidåker, P., & Witthöft, C. (2020). Less meat, more legumes: prospects and challenges in the transition toward sustainable diets in Sweden. Renewable Agriculture and Food Systems, 35(2), 192-205.
-
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., ... & Bales, S. (2023). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume science, 5(1), e155.
-
Grdeń, P., & Jakubczyk, A. (2023). Health benefits of legume seeds. Journal of the Science of Food and Agriculture, 103(11), 5213-5220.
-
Naghshi, S., Sadeghi, O., Willett, W. C., & Esmaillzadeh, A. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. Bmj, 370.
-
Ferreira, H., Vasconcelos, M., Gil, A. M., & Pinto, E. (2021). Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical reviews in food science and nutrition, 61(1), 85-96.
-
Bera, I., O’Sullivan, M., Flynn, D., & Shields, D. C. (2023). Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules, 28(7), 3204.
-
Jha, U. C., Nayyar, H., Parida, S. K., Deshmukh, R., von Wettberg, E. J., & Siddique, K. H. (2022). Ensuring global food security by improving protein content in major grain legumes using breeding and ‘Omics’ tools. International Journal of Molecular Sciences, 23(14), 7710.
-
Maphosa, Y., & Jideani, V. A. (2017). The role of legumes in human nutrition. Functional food-improve health through adequate food, 1, 13.
-
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(S1), S11-S26.
-
Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. Lwt, 138, 110796.
-
Hefnawy, T. H. (2011). Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Annals of Agricultural Sciences, 56(2), 57-61.
-
Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 592.
-
Ohanenye, I. C., Tsopmo, A., Ejike, C. E., & Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science & Technology, 101, 213-222.
-
Ali, A. S., & Elozeiri, A. A. (2017). Metabolic processes during seed germination. Advances in seed biology, 2017, 141-166.
-
Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14.
-
Singh, A., & Sharma, S. (2017). Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Critical Reviews in Food Science and Nutrition, 57(14), 3051-3071.
-
Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., Chang, Y. K., & De Mejia, E. G. (2010). Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food research international, 43(7), 1856-1865.
-
Onwuka, Q. I., Chinma, C. E., Ezeocha, V. C., Otegbayo, B., Oyeyinka, S. A., Adebo, J. A., ... & Adebo, O. A. (2024). Short‐term germinated legume flours as functional ingredients in food products. Journal of Food Science, 89(10), 6070-6085.
-
Chinma, C. E., Abu, J. O., Adedeji, O. E., Aburime, L. C., Joseph, D. G., Agunloye, G. F., ... & Adebo, O. A. (2022). Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Bioscience, 49, 101900.
-
Lakshmipathy, K., Buvaneswaran, M., Rawson, A., & Chidanand, D. V. (2024). Effect of dehulling and germination on the functional properties of grass pea (Lathyrus sativus) flour. Food Chemistry, 449, 139265.
-
López-Martínez, L. X., Leyva-López, N., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of functional foods, 38, 624-634.
-
Shohag, M. J. I., Wei, Y., & Yang, X. (2012). Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. Journal of Agricultural and Food Chemistry, 60(36), 9137-9143.
-
Ferrari, L., Panaite, S. A., Bertazzo, A., & Visioli, F. (2022). Animal-and plant-based protein sources: a scoping review of human health outcomes and environmental impact. Nutrients, 14(23), 5115.
-
Bernstein, A. M., Pan, A., Rexrode, K. M., Stampfer, M., Hu, F. B., Mozaffarian, D., & Willett, W. C. (2012). Dietary protein sources and the risk of stroke in men and women. Stroke.
-
Gorissen, S. H., Crombag, J. J., Senden, J. M., Waterval, W. H., Bierau, J., Verdijk, L. B., & Van Loon, L. J. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino acids, 50(12), 1685-1695.
-
Najib, T., Heydari, M. M., Tu, K., Vu, M., & Meda, V. (2023). Protein structural changes in lentil flour during soaking/germination and thermal treatments: Indication of nutritional and functional properties. Food Chemistry Advances, 3, 100475.
-
Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., & de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 111, 363-369.
-
Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food chemistry, 295, 579-587.
-
Fouad, A. A., & Rehab, F. M. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14(3), 233-246.
-
Chinma, C. E., Abu, J. O., Asikwe, B. N., Sunday, T., & Adebo, O. A. (2021). Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. Lwt, 140, 110749.
-
Setia, R., Dai, Z., Nickerson, M. T., Sopiwnyk, E., Malcolmson, L., & Ai, Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International, 122, 263-272.
-
Gunathunga, C., Senanayake, S., Jayasinghe, M. A., Brennan, C. S., Truong, T., Marapana, U., & Chandrapala, J. (2024). Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. Journal of Food Composition and Analysis, 128, 106024.
-
Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y., & Chen, Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology, 123, 187-197.
-
Berns RS. (2000). Billmeyer and Saltzman’s principles of color technology, 3rd edn. Wiley, NY
-
Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., ... & Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of food science and technology, 55(12), 5142-5152.
-
Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., ... & Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chemistry, 119(3), 1195-1200.
-
Palmiano, E. P., & Juliano, B. O. (1973). Changes in the activity of some hydrolases, peroxidase, and catalase in the rice seed during germination. Plant Physiology, 52(3), 274-277.
-
Rui, J., Ya-ting, L., Peng-ling, O., Man-tang, Y., Qi-lian, L., & Li-hua, S. (2018). Effects of germination on free amino acids and other nutrients in black barley. Science and Technology of Food Industry, 38-42.
-
Ma, Z., Boye, J. I., & Hu, X. (2017). In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Research International, 92, 64-78.
-
Wongsiri, S., Ohshima, T., & Duangmal, K. (2015). Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata). Journal of Food Processing and Preservation, 39(6), 1956-1964.
-
Randhir, R., Lin, Y. T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39(5), 637-646.
-
Papayrata, C., Saensouk, S., & Chumroenphat, T. (2024). Influence of germination time on free amino acids, phenolic compounds and γ-aminobutyric acid in pigeon pea (Cajanus cajan (L.) Huth) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13674-13674.
-
Qi, Q., Zhang, G., Wang, W., Sadiq, F. A., Zhang, Y., Li, X., ... & Li, Y. (2022). Preparation and antioxidant properties of germinated soybean protein hydrolysates. Frontiers in Nutrition, 9, 866239.
-
Guo, N., Zhang, S., Gu, M., & Xu, G. (2021). Function, transport, and regulation of amino acids: What is missing in rice?. The Crop Journal, 9(3), 530-542.
-
Salawu, S. O., Bester, M. J., & Duodu, K. G. (2014). Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. Journal of Food Biochemistry, 38(1), 62-72.
-
Ziegler, V., Muller, C. P., Mossmann, V., Dihel, G. W., Ferreira, C. D., Hoffmann, J. F., ... & Rossi, R. C. (2021). Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. Journal of Food Measurement and Characterization, 15(6), 5211-5220.
-
Alkaltham, M. S., Salamatullah, A. M., Özcan, M. M., Uslu, N., & Hayat, K. (2020). The effects of germination and heating on bioactive properties, phenolic compounds and mineral contents of green gram seeds. Lwt, 134, 110106.
-
Huang, X., Cai, W., & Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276.
-
Kaczmarska, K. T., Chandra-Hioe, M. V., Zabaras, D., Frank, D., & Arcot, J. (2017). Effect of germination and fermentation on carbohydrate composition of Australian sweet lupin and soybean seeds and flours. Journal of Agricultural and Food Chemistry, 65(46), 10064-10073.
-
Goyoaga, C., Burbano, C., Cuadrado, C., Romero, C., Guillamon, E., Varela, A., ... & Muzquiz, M. (2011). Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. Journal of food composition and analysis, 24(3), 391-397.
-
Trugo, L. C., Muzquiz, M., Pedrosa, M. M., Ayet, G., Burbano, C., Cuadrado, C., & Cavieres, E. (1999). Influence of malting on selected components of soya bean, black bean, chickpea and barley. Food Chemistry, 65(1), 85-90
-
Urbano, G., López-Jurado, M., Ławomir Frejnagel, S., Gómez-Villalva, E., Porres, J. M., Frías, J., ... & Aranda, P. (2005). Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 21(2), 230-239.
-
Kim, S. L., Lee, J. E., Kwon, Y. U., Kim, W. H., Jung, G. H., Kim, D. W., ... & Chung, I. M. (2013). Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 136(2), 491-500.
-
Peterbauer, T., & Richter, A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research, 11(3), 185-197.
-
Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., ... & Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35(3), 177-200.
-
Fendri, L. B., Chaari, F., Kallel, F., Koubaa, M., Zouari-Ellouzi, S., Kacem, I., ... & Ghribi-Aydi, D. (2022). Antioxidant and antimicrobial activities of polyphenols extracted from pea and broad bean pods wastes. Journal of Food Measurement and Characterization, 16(6), 4822-4832.
-
Alkaltham, M. S., Musa Özcan, M., Uslu, N., Salamatullah, A. M., & Hayat, K. (2022). Changes in antioxidant activity, phenolic compounds, fatty acids, and mineral contents of raw, germinated, and boiled lentil seeds. Journal of Food Science, 87(4), 1639-1649.
-
Tian, S., Nakamura, K., & Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), 4808-4813.
-
Xu, B. J., & Chang, S. K. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of food science, 72(2), S159-S166.
The Effect of Germination on Functional Properties of Legumes
Year 2025,
Volume: 1 Issue: 2, 124 - 135, 25.12.2025
Nejla Dagsuyu
,
Hasim Kelebek
Abstract
Legumes are an essential component of sustainable diets due to their high protein content, bioactive compounds, and functional properties. Germination, a cost-effective and eco-friendly bioprocess, induces profound biochemical and physiological modifications in legumes by activating endogenous enzymes. These changes include the hydrolysis of storage proteins into peptides and free amino acids, the mobilization of carbohydrates through amylase activity, and the enhanced biosynthesis of phenolic compounds and vitamins. Consequently, germination improves protein digestibility, modifies amino acid profiles, alters sugar composition, and increases total phenolic content and antioxidant capacity. In addition, germination induces structural and colour changes related to enzymatic browning and pigment redistribution. This review consolidates current evidence on the influence of germination on the nutritional and functional quality of legumes, highlighting its potential to enhance bioavailability of nutrients and to increase the health-promoting properties of legume-based foods. Germinated legumes therefore represent valuable raw materials for the formulation of functional foods and for advancing sustainable food systems.
References
-
del Socorro López-Cortez, M., Rosales-Martínez, P., Arellano-Cárdenas, S., & Cornejo-Mazón, M. (2016). Antioxidants properties and effect of processing methods on bioactive compounds of legumes. In Grain legumes. IntechOpen.
-
Kouris-Blazos, A., & Belski, R. (2016). Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pacific journal of clinical nutrition, 25(1), 1-17.
-
Röös, E., Carlsson, G., Ferawati, F., Hefni, M., Stephan, A., Tidåker, P., & Witthöft, C. (2020). Less meat, more legumes: prospects and challenges in the transition toward sustainable diets in Sweden. Renewable Agriculture and Food Systems, 35(2), 192-205.
-
Uebersax, M. A., Cichy, K. A., Gomez, F. E., Porch, T. G., Heitholt, J., Osorno, J. M., ... & Bales, S. (2023). Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume science, 5(1), e155.
-
Grdeń, P., & Jakubczyk, A. (2023). Health benefits of legume seeds. Journal of the Science of Food and Agriculture, 103(11), 5213-5220.
-
Naghshi, S., Sadeghi, O., Willett, W. C., & Esmaillzadeh, A. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. Bmj, 370.
-
Ferreira, H., Vasconcelos, M., Gil, A. M., & Pinto, E. (2021). Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical reviews in food science and nutrition, 61(1), 85-96.
-
Bera, I., O’Sullivan, M., Flynn, D., & Shields, D. C. (2023). Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules, 28(7), 3204.
-
Jha, U. C., Nayyar, H., Parida, S. K., Deshmukh, R., von Wettberg, E. J., & Siddique, K. H. (2022). Ensuring global food security by improving protein content in major grain legumes using breeding and ‘Omics’ tools. International Journal of Molecular Sciences, 23(14), 7710.
-
Maphosa, Y., & Jideani, V. A. (2017). The role of legumes in human nutrition. Functional food-improve health through adequate food, 1, 13.
-
Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(S1), S11-S26.
-
Rahate, K. A., Madhumita, M., & Prabhakar, P. K. (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. Lwt, 138, 110796.
-
Hefnawy, T. H. (2011). Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Annals of Agricultural Sciences, 56(2), 57-61.
-
Atudorei, D., Stroe, S. G., & Codină, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 592.
-
Ohanenye, I. C., Tsopmo, A., Ejike, C. E., & Udenigwe, C. C. (2020). Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends in Food Science & Technology, 101, 213-222.
-
Ali, A. S., & Elozeiri, A. A. (2017). Metabolic processes during seed germination. Advances in seed biology, 2017, 141-166.
-
Gan, R. Y., Lui, W. Y., Wu, K., Chan, C. L., Dai, S. H., Sui, Z. Q., & Corke, H. (2017). Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends in Food Science & Technology, 59, 1-14.
-
Singh, A., & Sharma, S. (2017). Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Critical Reviews in Food Science and Nutrition, 57(14), 3051-3071.
-
Paucar-Menacho, L. M., Berhow, M. A., Mandarino, J. M. G., Chang, Y. K., & De Mejia, E. G. (2010). Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food research international, 43(7), 1856-1865.
-
Onwuka, Q. I., Chinma, C. E., Ezeocha, V. C., Otegbayo, B., Oyeyinka, S. A., Adebo, J. A., ... & Adebo, O. A. (2024). Short‐term germinated legume flours as functional ingredients in food products. Journal of Food Science, 89(10), 6070-6085.
-
Chinma, C. E., Abu, J. O., Adedeji, O. E., Aburime, L. C., Joseph, D. G., Agunloye, G. F., ... & Adebo, O. A. (2022). Nutritional composition, bioactivity, starch characteristics, thermal and microstructural properties of germinated pigeon pea flour. Food Bioscience, 49, 101900.
-
Lakshmipathy, K., Buvaneswaran, M., Rawson, A., & Chidanand, D. V. (2024). Effect of dehulling and germination on the functional properties of grass pea (Lathyrus sativus) flour. Food Chemistry, 449, 139265.
-
López-Martínez, L. X., Leyva-López, N., Gutiérrez-Grijalva, E. P., & Heredia, J. B. (2017). Effect of cooking and germination on bioactive compounds in pulses and their health benefits. Journal of functional foods, 38, 624-634.
-
Shohag, M. J. I., Wei, Y., & Yang, X. (2012). Changes of folate and other potential health-promoting phytochemicals in legume seeds as affected by germination. Journal of Agricultural and Food Chemistry, 60(36), 9137-9143.
-
Ferrari, L., Panaite, S. A., Bertazzo, A., & Visioli, F. (2022). Animal-and plant-based protein sources: a scoping review of human health outcomes and environmental impact. Nutrients, 14(23), 5115.
-
Bernstein, A. M., Pan, A., Rexrode, K. M., Stampfer, M., Hu, F. B., Mozaffarian, D., & Willett, W. C. (2012). Dietary protein sources and the risk of stroke in men and women. Stroke.
-
Gorissen, S. H., Crombag, J. J., Senden, J. M., Waterval, W. H., Bierau, J., Verdijk, L. B., & Van Loon, L. J. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino acids, 50(12), 1685-1695.
-
Najib, T., Heydari, M. M., Tu, K., Vu, M., & Meda, V. (2023). Protein structural changes in lentil flour during soaking/germination and thermal treatments: Indication of nutritional and functional properties. Food Chemistry Advances, 3, 100475.
-
Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., & de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 111, 363-369.
-
Xu, M., Jin, Z., Simsek, S., Hall, C., Rao, J., & Chen, B. (2019). Effect of germination on the chemical composition, thermal, pasting, and moisture sorption properties of flours from chickpea, lentil, and yellow pea. Food chemistry, 295, 579-587.
-
Fouad, A. A., & Rehab, F. M. (2015). Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Scientiarum Polonorum Technologia Alimentaria, 14(3), 233-246.
-
Chinma, C. E., Abu, J. O., Asikwe, B. N., Sunday, T., & Adebo, O. A. (2021). Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. Lwt, 140, 110749.
-
Setia, R., Dai, Z., Nickerson, M. T., Sopiwnyk, E., Malcolmson, L., & Ai, Y. (2019). Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Research International, 122, 263-272.
-
Gunathunga, C., Senanayake, S., Jayasinghe, M. A., Brennan, C. S., Truong, T., Marapana, U., & Chandrapala, J. (2024). Germination effects on nutritional quality: A comprehensive review of selected cereals and pulses changes. Journal of Food Composition and Analysis, 128, 106024.
-
Liu, S., Wang, W., Lu, H., Shu, Q., Zhang, Y., & Chen, Q. (2022). New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends in Food Science & Technology, 123, 187-197.
-
Berns RS. (2000). Billmeyer and Saltzman’s principles of color technology, 3rd edn. Wiley, NY
-
Liu, Y., Xu, M., Wu, H., Jing, L., Gong, B., Gou, M., ... & Li, W. (2018). The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. Journal of food science and technology, 55(12), 5142-5152.
-
Tian, B., Xie, B., Shi, J., Wu, J., Cai, Y., Xu, T., ... & Deng, Q. (2010). Physicochemical changes of oat seeds during germination. Food Chemistry, 119(3), 1195-1200.
-
Palmiano, E. P., & Juliano, B. O. (1973). Changes in the activity of some hydrolases, peroxidase, and catalase in the rice seed during germination. Plant Physiology, 52(3), 274-277.
-
Rui, J., Ya-ting, L., Peng-ling, O., Man-tang, Y., Qi-lian, L., & Li-hua, S. (2018). Effects of germination on free amino acids and other nutrients in black barley. Science and Technology of Food Industry, 38-42.
-
Ma, Z., Boye, J. I., & Hu, X. (2017). In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Food Research International, 92, 64-78.
-
Wongsiri, S., Ohshima, T., & Duangmal, K. (2015). Chemical composition, amino acid profile and antioxidant activities of germinated mung beans (Vigna radiata). Journal of Food Processing and Preservation, 39(6), 1956-1964.
-
Randhir, R., Lin, Y. T., & Shetty, K. (2004). Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochemistry, 39(5), 637-646.
-
Papayrata, C., Saensouk, S., & Chumroenphat, T. (2024). Influence of germination time on free amino acids, phenolic compounds and γ-aminobutyric acid in pigeon pea (Cajanus cajan (L.) Huth) seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13674-13674.
-
Qi, Q., Zhang, G., Wang, W., Sadiq, F. A., Zhang, Y., Li, X., ... & Li, Y. (2022). Preparation and antioxidant properties of germinated soybean protein hydrolysates. Frontiers in Nutrition, 9, 866239.
-
Guo, N., Zhang, S., Gu, M., & Xu, G. (2021). Function, transport, and regulation of amino acids: What is missing in rice?. The Crop Journal, 9(3), 530-542.
-
Salawu, S. O., Bester, M. J., & Duodu, K. G. (2014). Phenolic composition and bioactive properties of cell wall preparations and whole grains of selected cereals and legumes. Journal of Food Biochemistry, 38(1), 62-72.
-
Ziegler, V., Muller, C. P., Mossmann, V., Dihel, G. W., Ferreira, C. D., Hoffmann, J. F., ... & Rossi, R. C. (2021). Fortification of bioactive components in mung bean grains through germination and evaluation of their cytotoxic activity in colorectal adenocarcinoma cells. Journal of Food Measurement and Characterization, 15(6), 5211-5220.
-
Alkaltham, M. S., Salamatullah, A. M., Özcan, M. M., Uslu, N., & Hayat, K. (2020). The effects of germination and heating on bioactive properties, phenolic compounds and mineral contents of green gram seeds. Lwt, 134, 110106.
-
Huang, X., Cai, W., & Xu, B. (2014). Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chemistry, 143, 268-276.
-
Kaczmarska, K. T., Chandra-Hioe, M. V., Zabaras, D., Frank, D., & Arcot, J. (2017). Effect of germination and fermentation on carbohydrate composition of Australian sweet lupin and soybean seeds and flours. Journal of Agricultural and Food Chemistry, 65(46), 10064-10073.
-
Goyoaga, C., Burbano, C., Cuadrado, C., Romero, C., Guillamon, E., Varela, A., ... & Muzquiz, M. (2011). Content and distribution of protein, sugars and inositol phosphates during the germination and seedling growth of two cultivars of Vicia faba. Journal of food composition and analysis, 24(3), 391-397.
-
Trugo, L. C., Muzquiz, M., Pedrosa, M. M., Ayet, G., Burbano, C., Cuadrado, C., & Cavieres, E. (1999). Influence of malting on selected components of soya bean, black bean, chickpea and barley. Food Chemistry, 65(1), 85-90
-
Urbano, G., López-Jurado, M., Ławomir Frejnagel, S., Gómez-Villalva, E., Porres, J. M., Frías, J., ... & Aranda, P. (2005). Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition, 21(2), 230-239.
-
Kim, S. L., Lee, J. E., Kwon, Y. U., Kim, W. H., Jung, G. H., Kim, D. W., ... & Chung, I. M. (2013). Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 136(2), 491-500.
-
Peterbauer, T., & Richter, A. (2001). Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research, 11(3), 185-197.
-
Guzmán-Ortiz, F. A., Castro-Rosas, J., Gómez-Aldapa, C. A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M. L., ... & Román-Gutiérrez, A. D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35(3), 177-200.
-
Fendri, L. B., Chaari, F., Kallel, F., Koubaa, M., Zouari-Ellouzi, S., Kacem, I., ... & Ghribi-Aydi, D. (2022). Antioxidant and antimicrobial activities of polyphenols extracted from pea and broad bean pods wastes. Journal of Food Measurement and Characterization, 16(6), 4822-4832.
-
Alkaltham, M. S., Musa Özcan, M., Uslu, N., Salamatullah, A. M., & Hayat, K. (2022). Changes in antioxidant activity, phenolic compounds, fatty acids, and mineral contents of raw, germinated, and boiled lentil seeds. Journal of Food Science, 87(4), 1639-1649.
-
Tian, S., Nakamura, K., & Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), 4808-4813.
-
Xu, B. J., & Chang, S. K. (2007). A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. Journal of food science, 72(2), S159-S166.