Derleme
BibTex RIS Kaynak Göster

ARCS-V ve MST motivasyon modellerinin yapay zekâ destekli uzaktan eğitim tasarımıyla bütünleştirilmesi: Sinerjik bir yaklaşım

Yıl 2025, Cilt: 11 Sayı: 1, 38 - 61, 28.01.2025
https://doi.org/10.51948/auad.1542975

Öz

Bu çalışma, ARCS-V (Dikkat, Alaka, Güven, Memnuniyet ve İstek) modelini ve Motivasyon Sistemleri Teorisini (MST) yapay zekâ destekli uzaktan eğitim ortamlarına entegre eden yeni bir çerçeve önermektedir. Önerilen çerçeve ile bu modellerin entegrasyonunun, YZ destekli öğrenci motivasyonunu daha bütüncül bir şekilde nasıl destekleyebileceği gösterilmektedir. YZ araçları ile motivasyon değerlendirme, uyarlanabilir müdahaleler ve sinerjik destek mekanizmalarını birleştirerek öğrenci ihtiyaçlarına göre özelleştirilmiş uzaktan eğitim ortamları geliştirilebilir. İlgi çekici ve doyurucu öğrenme deneyimleri sağlamaya odaklanan ARCS-V modelinin güçlü yönlerini, kişisel hedeflerin, duyguların ve çevresel faktörlerin önemini vurgulayan MST ile birleştiren bu yeni yaklaşım, öğrenci motivasyonunu sürdürmek için daha bütünsel ve etkili bir yol önermektedir. ARCS-V ve MST modellerinin uzaktan eğitim ortamlarına Yapay Zekanın değerlendirme, müdahale ve destek boyutlarıyla nasıl birleştirilebileceği incelenmektedir. Uzaktan eğitimde bu iki motivasyon modelinin yapay zekâ desteğiyle bütünleştirilmesi ile yalnızca içeriğin etkili sunumu değil aynı zamanda öğrenci katılımının da arttırılması sağlanabilir.

Etik Beyan

Yazarlar arasında herhangi bir çıkar çatışması yoktur. Derleme tarzında bir makale olduğundan etik onay alınmamıştır.

Destekleyen Kurum

Destekleyen kurum yoktur.

Kaynakça

  • Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
  • Bandura, A. (1995). Self-efficacy in changing societies. Cambridge: Cambridge University Press.
  • Campbell, M. M. (2007). Motivational systems theory and the academic performance of college students. Journal of College Teaching and Learning, 4(7), 11–24. https://doi.org/10.19030/tlc.v4i7.1561
  • Cho, M. H., & Heron, M. L. (2015). Self-regulated learning: The role of motivation, emotion, and use of learning strategies in students' learning experiences in a self-paced online mathematics course. Distance Education, 36(1), 80-99. https://doi.org/10.1080/01587919.2015.1019963
  • Colbeck, C. L., & Weaver, L. D. (2018). Engagement in public scholarship: A motivation systems theory perspective. Journal of Higher Education Outreach and Engagement, 22(2), 7-32.
  • Craig, K. A. (2018). Motivation in instructional design (Order No. 10751186). ProQuest Dissertations & Theses Global. https://search.proquest.com/docview/2030439199?accountid=7181
  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press Publishing Co.
  • Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325-346. https://doi.org/10.1207/s15326985ep2603&4_6
  • Deimann, M., & Bastiaens, T. (2010). The role of volition in distance education: An exploration of its capacities. International Review of Research in Open and Distance Learning, 11(1), 1-16.
  • Dutta, S., Ranjan, S., Mishra, S., Sharma, V., Hewage, P., & Iwendi, C. (2024, February). Enhancing educational adaptability: A review and analysis of AI-driven adaptive learning platforms. In 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM) (pp. 1-5). IEEE. https://doi.org/10.1109/ICIPTM59628.2024.10563448
  • Ebadi, S., & Amini, A. (2024). Examining the roles of social presence and human-likeness on Iranian EFL learners' motivation using artificial intelligence technology: A case of CSIEC chatbot. Interactive Learning Environments, 32(2), 655-673. https://doi.org/10.1080/10494820.2022.2096638
  • Fancsali, S. E., Sandbothe, M., & Ritter, S. (2023). Orchestrating Classrooms and Tutoring with Carnegie Learning's MATHia and LiveLab. In Human-AI Math Tutoring@ AIED (pp. 1-11).
  • Fang, X., Ng, D. T. K., Leung, J. K. L., & Xu, H. (2023). The applications of the ARCS model in instructional design, theoretical framework, and measurement tool: a systematic review of empirical studies. Interactive Learning Environments, 1-28. https://doi.org/10.1080/10494820.2023.2240867
  • Fırat, M., Kılınç, H., & Yüzer, T. (2018). Level of intrinsic motivation of distance education students in e-learning environments. Journal of Computer Assisted Learning, 34(1), 63-70. https://doi.org/10.1111/jcal.12214
  • Fidan, M., & Gencel, N. (2022). Supporting the instructional videos with chatbot and peer feedback mechanisms in online learning: The effects on learning performance and intrinsic motivation. Journal of Educational Computing Research, 60(7), 1716-1741. https://doi.org/10.1177/07356331221077901
  • Ford, M. (1992). Motivating humans: Goals, emotions, and personal agency beliefs. Newbury Park, CA: Sage Publications.
  • Garlinska, M., Osial, M., Proniewska, K., & Pregowska, A. (2023). The influence of emerging technologies on distance education. Electronics, 12(7), 1550.
  • Geary, D. C., & Xu, K. M. (2022). Evolutionary perspectives on educational psychology: Motivation, instructional design, and child development. Educational Psychology Review, 34(4), 2221-2227. https://doi.org/10.1007/s10648-022-09710-4
  • Ghani, M. T. A., Daud, W. A. A. W., & Manan, K. A. (2024). Integration of the ARCS motivational model in digital game-based learning for sustaining student engagement in communication. International Journal of Religion, 5(5), 85-93. https://doi.org/10.61707/sa9ded72
  • González, L. F. M., & Quiroz, V. G. (2019). Instructional design in online education: A systemic approach. European Journal of Education, 2(3), 43-52.
  • Göksu, I. & Bolat, Y. I. (2020). Does the ARCS motivational model affect students' achievement and motivation? A meta‐analysis, Review of Education, https://doi.org/10.1002/rev3.3231.
  • Guo, J., Ma, Y., Li, T., Noetel, M., Liao, K., & Greiff, S. (2024). Harnessing Artificial Intelligence in Generative Content for enhancing motivation in learning. Learning and Individual Differences, 102547. https://doi.org/10.1016/j.lindif.2024.102547
  • Gupta, S. (2024). Gamification and e-learning adoption: a sequential mediation analysis of flow and engagement. VINE Journal of Information and Knowledge Management Systems, 54(6), 1342-1359. https://doi.org/10.1108/VJIKMS-04-2022-0131
  • Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in e-learning: Personalized learning and adaptive assessment through cognitive neuropsychology—A systematic analysis. Electronics, 13(18), 3762. https://doi.org/10.3390/electronics13183762
  • Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57(4), 542-570. https://doi.org/10.1111/ejed.12533
  • Huett, J. B., Kalinowski, K. E., Moller, L., & Huett, K. C. (2008). Improving the motivation and retention of online students through the use of ARCS-based emails. American Journal of Distance Education, 22(3), 159-176. https://doi.org/10.1080/08923640802224451
  • Jamison, T. M. (2003). Ebb from the web: Using motivational systems theory to predict student completion of asynchronous web-based distance education courses (Order No. 3081396). ProQuest Dissertations & Theses Global.
  • Katiyar, N., Awasthi, M. V. K., Pratap, R., Mishra, M. K., Shukla, M. N., & Tiwari, M. (2024). Ai-Driven Personalized Learning Systems: Enhancing Educational Effectiveness. Educational Administration: Theory and Practice, 30(5), 11514-11524. https://doi.org/10.53555/kuey.v30i5.4961
  • Katonane Gyonyoru, K. I. (2024). The role of AI-based adaptive learning systems in digital education. Journal of Applied Technical and Educational Sciences, 14(2), 1-12.
  • Kayak, S., & Mahiroğlu, A. (2010). ARCS Güdüleme Modeline Göre Tasarlanan Eğitsel Yazılımın Öğrenmeye Etkisi. Türk Eğitim Bilimleri Dergisi, 8(1), 67-88.
  • Keller, J. M. (2008). First principles of motivation to learn and e-learning. Distance Education, 29(2), 175-185. https://doi.org/10.1080/01587910802154970
  • Keller, J. M. (2016). Motivation, Learning, and Technology: Applying the ARCS-V Motivation Model. Participatory Educational Research, 3, 1-13. https://doi.org/10.17275/per.16.06.3.2
  • Keller, J. M., Deimann, M., & Liu, Z. (2005). Effects of integrated motivational and volitional tactics on study habits, attitudes, and performance. 2005 Annual Proceedings-Orlando: Volume, 234.
  • Keller, J. M., & Suzuki, K. (2004). Learner motivation and e-learning design: A multinationally validated process. Journal of Educational Media, 29(3), 229-239. https://doi.org/10.1080/1358165042000283084
  • Kim, K., & Frick, T. W. (2011). Changes in student motivation during online learning. Journal of Educational Computing Research, 44(1), 1-23. https://doi.org/10.2190/EC.44.1.a
  • Kruk, M., & Kałużna, A. (2024). Investigating the Role of AI Tools in Enhancing Translation Skills, Emotional Experiences, and Motivation in L2 Learning. European Journal of Education, e12859. https://doi.org/10.1111/ejed.12859
  • Li, K., & Keller, J. M. (2018). Use of the ARCS model in education: A literature review. Computers & Education, 122, 54-62. https://doi.org/10.1016/j.compedu.2018.03.019
  • Maiti M., Priyaadharshini M., & Harini, S. (2023). Design and evaluation of a revised ARCS motivational model for online classes in higher education. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22729
  • Martens, R., Bastiaens, T., & Kirschner, P. A. (2007). New learning design in distance education: The impact on student perception and motivation. Distance Education, 28(1), 81-93. https://doi.org/10.1080/01587910701305327
  • Mayer, R. E., & Fiorella, L. (2021). Principles for Multimedia Learning. https://doi.org/10.1017/9781108894333.003
  • Moore, M. G. (2023). From correspondence education to online distance education. In Handbook of open, distance and digital education (pp. 27-42). Singapore: Springer Nature Singapore.
  • Park, J. H., & Choi, H. J. (2009). Factors influencing adult learners' decision to drop out or persist in online learning. Journal of Educational Technology & Society, 12(4), 207-217.
  • Pittenger, A., & Doering, A. (2010). Influence of motivational design on completion rates in online self‐study pharmacy‐content courses. Distance Education, 31(3), 275-293. https://doi.org/10.1080/01587919.2010.513953
  • Richardson, R. C. (2009). Using Motivational Systems Theory To Explore Factors That Influence The Teaching Strategies of Undergraduate Social Work Faculty. Unpublished Dissertation. Case Western Reserve University. https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=case1238790333&disposition=inline
  • Robison, D. G., & Watson, G. S. (2013). Guidelines for the Motivational Design of Instructional Simulations. The Journal of Applied İnstructional Design, 3(2), 41-52. https://doi.org/10.28990/jaid2013.00127
  • Santhosh, J., Dengel, A., & Ishimaru, S. (2024). Gaze-Driven Adaptive Learning System with ChatGPT-Generated Summaries. IEEE Access, 12, 173714-173733. https://doi.org/10.1109/ACCESS.2024.3503059
  • Simsek, A. (2014). Interwiew with John M. Keller on motivational desing of instruction. Contemporary Educational Technology, https://files.eric.ed.gov/fulltext/EJ1105558.pdf
  • Skinner, B. F. (1968). Teaching Science in High School—What Is Wrong? Scientists have not brought the methods of science to bear on the improvement of instruction. Science, 159(3816), 704-710.
  • Song, C., Shin, S. Y., & Shin, K. S. (2024). Implementing the Dynamic Feedback-Driven Learning Optimization Framework: A Machine Learning Approach to Personalize Educational Pathways. Applied Sciences, 14(2), 916. https://doi.org/10.3390/app14020916
  • Sung, J. S., & Huang, W. D. (2022). Motivational design for inclusive digital learning innovation: A systematic literature review. The Journal of Applied Instructional Design, 11(2), 1-12. https://doi.org/10.59668/377.8287
  • Ucar, H., & Kumtepe, A. T. (2020). Effects of the ARCS‐V‐based motivational strategies on online learners' academic performance, motivation, volition, and course interest. Journal of Computer Assisted Learning, 36(3), 335-349. https://doi.org/10.1111/jcal.12404
  • Urhahne, D., Wijnia, L. (2023). Theories of Motivation in Education: an Integrative Framework. Educational Psychology Review, 35, 45. https://doi.org/10.1007/s10648-023-09767-9.
  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197-221. https://doi.org/10.1080/00461520.2011.611369 Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective. Educational Psychology Review, 6, 49-78. https://doi.org/10.1007/BF02209024
  • Woo, J. C. (2014). Digital game-based learning supports student motivation, cognitive success, and performance outcomes. Journal of Educational Technology & Society, 17(3), 291-307.
  • Yang, Y., Sun, W., Sun, D., & Salas-Pilco, S. Z. (2024). Navigating the AI-Enhanced STEM education landscape: a decade of insights, trends, and opportunities. Research in Science & Technological Education, 1-25. https://doi.org/10.1080/02635143.2024.2370764
  • Yu, S., Androsov, A., Yan, H., & Chen, Y. (2024). Bridging computer and education sciences: A systematic review of automated emotion recognition in online learning environments. Computers & Education, 105111. https://doi.org/10.1016/j.compedu.2024.105111
  • Yuan, L., and X. Liu. (2025). The Effect of Artificial Intelligence Tools on EFL Learners' Engagement, Enjoyment, and Motivation. Computers in Human Behavior 162, 108474. https://doi.org/10.1016/j.chb.2024.108474.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhang, S., de Koning, B. B., & Paas, F. (2023). Effects of mouse pointing on learning from labeled and unlabeled split-attention materials: An eye-tracking study. Computers in Human Behavior, 143, 107673. https://doi.org/10.1016/j.chb.2023.107673

Integrating ARCS-V and MST motivation models into AI-supported distance education design: A synergistic approach

Yıl 2025, Cilt: 11 Sayı: 1, 38 - 61, 28.01.2025
https://doi.org/10.51948/auad.1542975

Öz

This article proposes a new framework that integrates the ARCS-V (Attention, Relevance, Confidence, Satisfaction, and Volition) model and Motivational Systems Theory (MST) into AI-supported distance learning environments. The proposed framework shows how the integration of these models can support AI-supported student motivation in a more holistic way. By combining AI tools with motivation assessment, adaptive interventions and synergistic support mechanisms, customized distance learning environments can be developed according to student needs. Combining the strengths of the ARCS-V model, which focuses on providing engaging and satisfying learning experiences, with MST, which emphasizes the importance of personal goals, emotions, and environmental factors, this new approach suggests a more holistic and effective way to sustain student motivation. The paper examines how the ARCS-V and MST models can be combined with the assessment, intervention and support dimensions of Artificial Intelligence in distance education settings. By integrating these two motivational models in ODL with the support of AI, not only effective presentation of content but also increased student engagement can be achieved.

Kaynakça

  • Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social and Administrative Pharmacy, 19(8), 1236-1242. https://doi.org/10.1016/j.sapharm.2023.05.016
  • Bandura, A. (1995). Self-efficacy in changing societies. Cambridge: Cambridge University Press.
  • Campbell, M. M. (2007). Motivational systems theory and the academic performance of college students. Journal of College Teaching and Learning, 4(7), 11–24. https://doi.org/10.19030/tlc.v4i7.1561
  • Cho, M. H., & Heron, M. L. (2015). Self-regulated learning: The role of motivation, emotion, and use of learning strategies in students' learning experiences in a self-paced online mathematics course. Distance Education, 36(1), 80-99. https://doi.org/10.1080/01587919.2015.1019963
  • Colbeck, C. L., & Weaver, L. D. (2018). Engagement in public scholarship: A motivation systems theory perspective. Journal of Higher Education Outreach and Engagement, 22(2), 7-32.
  • Craig, K. A. (2018). Motivation in instructional design (Order No. 10751186). ProQuest Dissertations & Theses Global. https://search.proquest.com/docview/2030439199?accountid=7181
  • Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press Publishing Co.
  • Deci, E. L., Vallerand, R. J., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3-4), 325-346. https://doi.org/10.1207/s15326985ep2603&4_6
  • Deimann, M., & Bastiaens, T. (2010). The role of volition in distance education: An exploration of its capacities. International Review of Research in Open and Distance Learning, 11(1), 1-16.
  • Dutta, S., Ranjan, S., Mishra, S., Sharma, V., Hewage, P., & Iwendi, C. (2024, February). Enhancing educational adaptability: A review and analysis of AI-driven adaptive learning platforms. In 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM) (pp. 1-5). IEEE. https://doi.org/10.1109/ICIPTM59628.2024.10563448
  • Ebadi, S., & Amini, A. (2024). Examining the roles of social presence and human-likeness on Iranian EFL learners' motivation using artificial intelligence technology: A case of CSIEC chatbot. Interactive Learning Environments, 32(2), 655-673. https://doi.org/10.1080/10494820.2022.2096638
  • Fancsali, S. E., Sandbothe, M., & Ritter, S. (2023). Orchestrating Classrooms and Tutoring with Carnegie Learning's MATHia and LiveLab. In Human-AI Math Tutoring@ AIED (pp. 1-11).
  • Fang, X., Ng, D. T. K., Leung, J. K. L., & Xu, H. (2023). The applications of the ARCS model in instructional design, theoretical framework, and measurement tool: a systematic review of empirical studies. Interactive Learning Environments, 1-28. https://doi.org/10.1080/10494820.2023.2240867
  • Fırat, M., Kılınç, H., & Yüzer, T. (2018). Level of intrinsic motivation of distance education students in e-learning environments. Journal of Computer Assisted Learning, 34(1), 63-70. https://doi.org/10.1111/jcal.12214
  • Fidan, M., & Gencel, N. (2022). Supporting the instructional videos with chatbot and peer feedback mechanisms in online learning: The effects on learning performance and intrinsic motivation. Journal of Educational Computing Research, 60(7), 1716-1741. https://doi.org/10.1177/07356331221077901
  • Ford, M. (1992). Motivating humans: Goals, emotions, and personal agency beliefs. Newbury Park, CA: Sage Publications.
  • Garlinska, M., Osial, M., Proniewska, K., & Pregowska, A. (2023). The influence of emerging technologies on distance education. Electronics, 12(7), 1550.
  • Geary, D. C., & Xu, K. M. (2022). Evolutionary perspectives on educational psychology: Motivation, instructional design, and child development. Educational Psychology Review, 34(4), 2221-2227. https://doi.org/10.1007/s10648-022-09710-4
  • Ghani, M. T. A., Daud, W. A. A. W., & Manan, K. A. (2024). Integration of the ARCS motivational model in digital game-based learning for sustaining student engagement in communication. International Journal of Religion, 5(5), 85-93. https://doi.org/10.61707/sa9ded72
  • González, L. F. M., & Quiroz, V. G. (2019). Instructional design in online education: A systemic approach. European Journal of Education, 2(3), 43-52.
  • Göksu, I. & Bolat, Y. I. (2020). Does the ARCS motivational model affect students' achievement and motivation? A meta‐analysis, Review of Education, https://doi.org/10.1002/rev3.3231.
  • Guo, J., Ma, Y., Li, T., Noetel, M., Liao, K., & Greiff, S. (2024). Harnessing Artificial Intelligence in Generative Content for enhancing motivation in learning. Learning and Individual Differences, 102547. https://doi.org/10.1016/j.lindif.2024.102547
  • Gupta, S. (2024). Gamification and e-learning adoption: a sequential mediation analysis of flow and engagement. VINE Journal of Information and Knowledge Management Systems, 54(6), 1342-1359. https://doi.org/10.1108/VJIKMS-04-2022-0131
  • Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in e-learning: Personalized learning and adaptive assessment through cognitive neuropsychology—A systematic analysis. Electronics, 13(18), 3762. https://doi.org/10.3390/electronics13183762
  • Holmes, W., & Tuomi, I. (2022). State of the art and practice in AI in education. European Journal of Education, 57(4), 542-570. https://doi.org/10.1111/ejed.12533
  • Huett, J. B., Kalinowski, K. E., Moller, L., & Huett, K. C. (2008). Improving the motivation and retention of online students through the use of ARCS-based emails. American Journal of Distance Education, 22(3), 159-176. https://doi.org/10.1080/08923640802224451
  • Jamison, T. M. (2003). Ebb from the web: Using motivational systems theory to predict student completion of asynchronous web-based distance education courses (Order No. 3081396). ProQuest Dissertations & Theses Global.
  • Katiyar, N., Awasthi, M. V. K., Pratap, R., Mishra, M. K., Shukla, M. N., & Tiwari, M. (2024). Ai-Driven Personalized Learning Systems: Enhancing Educational Effectiveness. Educational Administration: Theory and Practice, 30(5), 11514-11524. https://doi.org/10.53555/kuey.v30i5.4961
  • Katonane Gyonyoru, K. I. (2024). The role of AI-based adaptive learning systems in digital education. Journal of Applied Technical and Educational Sciences, 14(2), 1-12.
  • Kayak, S., & Mahiroğlu, A. (2010). ARCS Güdüleme Modeline Göre Tasarlanan Eğitsel Yazılımın Öğrenmeye Etkisi. Türk Eğitim Bilimleri Dergisi, 8(1), 67-88.
  • Keller, J. M. (2008). First principles of motivation to learn and e-learning. Distance Education, 29(2), 175-185. https://doi.org/10.1080/01587910802154970
  • Keller, J. M. (2016). Motivation, Learning, and Technology: Applying the ARCS-V Motivation Model. Participatory Educational Research, 3, 1-13. https://doi.org/10.17275/per.16.06.3.2
  • Keller, J. M., Deimann, M., & Liu, Z. (2005). Effects of integrated motivational and volitional tactics on study habits, attitudes, and performance. 2005 Annual Proceedings-Orlando: Volume, 234.
  • Keller, J. M., & Suzuki, K. (2004). Learner motivation and e-learning design: A multinationally validated process. Journal of Educational Media, 29(3), 229-239. https://doi.org/10.1080/1358165042000283084
  • Kim, K., & Frick, T. W. (2011). Changes in student motivation during online learning. Journal of Educational Computing Research, 44(1), 1-23. https://doi.org/10.2190/EC.44.1.a
  • Kruk, M., & Kałużna, A. (2024). Investigating the Role of AI Tools in Enhancing Translation Skills, Emotional Experiences, and Motivation in L2 Learning. European Journal of Education, e12859. https://doi.org/10.1111/ejed.12859
  • Li, K., & Keller, J. M. (2018). Use of the ARCS model in education: A literature review. Computers & Education, 122, 54-62. https://doi.org/10.1016/j.compedu.2018.03.019
  • Maiti M., Priyaadharshini M., & Harini, S. (2023). Design and evaluation of a revised ARCS motivational model for online classes in higher education. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22729
  • Martens, R., Bastiaens, T., & Kirschner, P. A. (2007). New learning design in distance education: The impact on student perception and motivation. Distance Education, 28(1), 81-93. https://doi.org/10.1080/01587910701305327
  • Mayer, R. E., & Fiorella, L. (2021). Principles for Multimedia Learning. https://doi.org/10.1017/9781108894333.003
  • Moore, M. G. (2023). From correspondence education to online distance education. In Handbook of open, distance and digital education (pp. 27-42). Singapore: Springer Nature Singapore.
  • Park, J. H., & Choi, H. J. (2009). Factors influencing adult learners' decision to drop out or persist in online learning. Journal of Educational Technology & Society, 12(4), 207-217.
  • Pittenger, A., & Doering, A. (2010). Influence of motivational design on completion rates in online self‐study pharmacy‐content courses. Distance Education, 31(3), 275-293. https://doi.org/10.1080/01587919.2010.513953
  • Richardson, R. C. (2009). Using Motivational Systems Theory To Explore Factors That Influence The Teaching Strategies of Undergraduate Social Work Faculty. Unpublished Dissertation. Case Western Reserve University. https://etd.ohiolink.edu/acprod/odb_etd/ws/send_file/send?accession=case1238790333&disposition=inline
  • Robison, D. G., & Watson, G. S. (2013). Guidelines for the Motivational Design of Instructional Simulations. The Journal of Applied İnstructional Design, 3(2), 41-52. https://doi.org/10.28990/jaid2013.00127
  • Santhosh, J., Dengel, A., & Ishimaru, S. (2024). Gaze-Driven Adaptive Learning System with ChatGPT-Generated Summaries. IEEE Access, 12, 173714-173733. https://doi.org/10.1109/ACCESS.2024.3503059
  • Simsek, A. (2014). Interwiew with John M. Keller on motivational desing of instruction. Contemporary Educational Technology, https://files.eric.ed.gov/fulltext/EJ1105558.pdf
  • Skinner, B. F. (1968). Teaching Science in High School—What Is Wrong? Scientists have not brought the methods of science to bear on the improvement of instruction. Science, 159(3816), 704-710.
  • Song, C., Shin, S. Y., & Shin, K. S. (2024). Implementing the Dynamic Feedback-Driven Learning Optimization Framework: A Machine Learning Approach to Personalize Educational Pathways. Applied Sciences, 14(2), 916. https://doi.org/10.3390/app14020916
  • Sung, J. S., & Huang, W. D. (2022). Motivational design for inclusive digital learning innovation: A systematic literature review. The Journal of Applied Instructional Design, 11(2), 1-12. https://doi.org/10.59668/377.8287
  • Ucar, H., & Kumtepe, A. T. (2020). Effects of the ARCS‐V‐based motivational strategies on online learners' academic performance, motivation, volition, and course interest. Journal of Computer Assisted Learning, 36(3), 335-349. https://doi.org/10.1111/jcal.12404
  • Urhahne, D., Wijnia, L. (2023). Theories of Motivation in Education: an Integrative Framework. Educational Psychology Review, 35, 45. https://doi.org/10.1007/s10648-023-09767-9.
  • VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197-221. https://doi.org/10.1080/00461520.2011.611369 Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective. Educational Psychology Review, 6, 49-78. https://doi.org/10.1007/BF02209024
  • Woo, J. C. (2014). Digital game-based learning supports student motivation, cognitive success, and performance outcomes. Journal of Educational Technology & Society, 17(3), 291-307.
  • Yang, Y., Sun, W., Sun, D., & Salas-Pilco, S. Z. (2024). Navigating the AI-Enhanced STEM education landscape: a decade of insights, trends, and opportunities. Research in Science & Technological Education, 1-25. https://doi.org/10.1080/02635143.2024.2370764
  • Yu, S., Androsov, A., Yan, H., & Chen, Y. (2024). Bridging computer and education sciences: A systematic review of automated emotion recognition in online learning environments. Computers & Education, 105111. https://doi.org/10.1016/j.compedu.2024.105111
  • Yuan, L., and X. Liu. (2025). The Effect of Artificial Intelligence Tools on EFL Learners' Engagement, Enjoyment, and Motivation. Computers in Human Behavior 162, 108474. https://doi.org/10.1016/j.chb.2024.108474.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators. International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0
  • Zhang, S., de Koning, B. B., & Paas, F. (2023). Effects of mouse pointing on learning from labeled and unlabeled split-attention materials: An eye-tracking study. Computers in Human Behavior, 143, 107673. https://doi.org/10.1016/j.chb.2023.107673
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitim Teknolojisi ve Bilgi İşlem, Öğrenme Bilimleri
Bölüm Makaleler
Yazarlar

Harun Serpil 0000-0002-6293-9385

Cemil Şahin 0000-0001-8752-0006

Yayımlanma Tarihi 28 Ocak 2025
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 15 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Serpil, H., & Şahin, C. (2025). Integrating ARCS-V and MST motivation models into AI-supported distance education design: A synergistic approach. Açıköğretim Uygulamaları Ve Araştırmaları Dergisi, 11(1), 38-61. https://doi.org/10.51948/auad.1542975