Araştırma Makalesi
BibTex RIS Kaynak Göster

GENERALIZED SELF-DUALITY OF 2-FORMS AND DUALITY OPERATOR

Yıl 2017, Cilt: 5 Sayı: 2, 161 - 171, 31.10.2017

Öz

In this work, over
n-dimensional 
(n > 4) oriented inner product space, T_Phi duality operator is defined by using the non
zero Phi
,(n-4)-form
and it is shown that this operator is symmetric. Over the spaces whose
dimension is greater than four we defined self-duality, anti-self-duality, weak
self-duality and weak anti-self-duality of a 2
-form. Especially,
over the spaces R^n
  for 5<=n<=8  the duality operator T_Phi which corresponds to the fundamental forms is
studied in details.

Kaynakça

  • Moore J. Lectures Notes on Seiberg-Wittens Invariants. Springer-Verlag New York, Inc, 1996.
  • Morgan J. The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton University Press, 1995.
  • Donaldson S.K. The Seiberg-Witten and 4-manifold topology. Bull Amer Math Soc 1996; 33:45-70.
  • Donaldson S.K. Yang-Mills Invariants of Four-Manifolds. Cambridge University Press, 1990.
  • Naber G.L. Topology, Geometry, and Gauge Fields,.Springer-Verlag New York, Inc, 1996.
  • P. do Carmo M. Diferential Forms and Applications. Springer-Verlag New York, Inc, 1994.
  • Harvey F.R. Spinors and Calibrations. Academic Press, Inc. California 1990.
  • Lee J.M.. Introduction to Smooth Manifolds. Springer-Verlag New York, Inc, 2003.
  • Smith L. Linear Algebra. Springer-Verlag New York, Inc, 1998.
  • Zeybek H. 2-Formların Genelleştirilmiş Self-Dualliği. Anadolu Üniversitesi, Eskişehir,Türkiye, 2014.

2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ

Yıl 2017, Cilt: 5 Sayı: 2, 161 - 171, 31.10.2017

Öz

Bu çalışmada V,  n-boyutlu (n > 4) yönlendirilmiş iç çarpım
uzayı üzerinde sıfırdan farklı Phi
, (n-4)-formu yardımıyla 2-formlardan 2-formlara giden T_Phi 
dualite operatörü tanımlanmış ve bu operatörün simetrik olduğu
gösterilmiştir. T_Phi
 operatörü yardımıyla  n > 4 durumunda 2-formlar için
self-duallik, anti-self-duallik, zayıf self-duallik ve zayıf anti-self-duallik
kavramları tanımlanmıştır. Özel olarak, 5<=n<=8 
için R^n üzerindeki temel formlara karşılık gelen T_Phi operatörü ayrıntılı olarak incelenmiştir.

Kaynakça

  • Moore J. Lectures Notes on Seiberg-Wittens Invariants. Springer-Verlag New York, Inc, 1996.
  • Morgan J. The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds. Princeton University Press, 1995.
  • Donaldson S.K. The Seiberg-Witten and 4-manifold topology. Bull Amer Math Soc 1996; 33:45-70.
  • Donaldson S.K. Yang-Mills Invariants of Four-Manifolds. Cambridge University Press, 1990.
  • Naber G.L. Topology, Geometry, and Gauge Fields,.Springer-Verlag New York, Inc, 1996.
  • P. do Carmo M. Diferential Forms and Applications. Springer-Verlag New York, Inc, 1994.
  • Harvey F.R. Spinors and Calibrations. Academic Press, Inc. California 1990.
  • Lee J.M.. Introduction to Smooth Manifolds. Springer-Verlag New York, Inc, 2003.
  • Smith L. Linear Algebra. Springer-Verlag New York, Inc, 1998.
  • Zeybek H. 2-Formların Genelleştirilmiş Self-Dualliği. Anadolu Üniversitesi, Eskişehir,Türkiye, 2014.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Hatice Zeybek

Yayımlanma Tarihi 31 Ekim 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Zeybek, H. (2017). 2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 5(2), 161-171. https://doi.org/10.20290/aubtdb.323291
AMA Zeybek H. 2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ. AUBTD-B. Ekim 2017;5(2):161-171. doi:10.20290/aubtdb.323291
Chicago Zeybek, Hatice. “2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 5, sy. 2 (Ekim 2017): 161-71. https://doi.org/10.20290/aubtdb.323291.
EndNote Zeybek H (01 Ekim 2017) 2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 5 2 161–171.
IEEE H. Zeybek, “2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ”, AUBTD-B, c. 5, sy. 2, ss. 161–171, 2017, doi: 10.20290/aubtdb.323291.
ISNAD Zeybek, Hatice. “2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 5/2 (Ekim 2017), 161-171. https://doi.org/10.20290/aubtdb.323291.
JAMA Zeybek H. 2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ. AUBTD-B. 2017;5:161–171.
MLA Zeybek, Hatice. “2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 5, sy. 2, 2017, ss. 161-7, doi:10.20290/aubtdb.323291.
Vancouver Zeybek H. 2-FORMLARIN GENELLEŞTİRİLMİŞ SELF-DUALLİĞİ VE DUALİTE OPERATÖRÜ. AUBTD-B. 2017;5(2):161-7.