Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Relationship Between Gifted Students’ Perceptions of Computational Thinking Skills Level and Perceptions of Creativity Level

Yıl 2023, , 1393 - 1410, 23.10.2023
https://doi.org/10.34056/aujef.1256729

Öz

According to many platforms and educators around the world, creativity and computational thinking are among the most crucial skills for the workforce of the future and for today's students. Today, these two important skills are tried to be included in the curriculum. In this study, it is aimed to examine the relationship between creativity and computational thinking skills perceptions of gifted students. The other aim of the study is to determine to what extent the gifted students’ perception of creativity level predicts the computational thinking skill perception. In line with the purpose of the research, the relational screening model was determined as the research model. The convenience sampling method was determined as the research model. The sample consists of 92 gifted students at the secondary school level attending the Science and Art Center. Computational Thinking Skill Level Scale" was used to determine the perception of the computational thinking skill level of gifted students and "How Creative Are You?" to determine their perception of creativity was used. Pearson correlation analysis and simple linear regression analysis were used in data analysis. According to the research findings, a positive, low and significant relationship was determined between the perception of creativity and computational thinking. In addition, the findings indicate that the perception of the creativity level of gifted students is a significant predictor of the perception of the level of computational thinking. Research findings are in line with the literature. As a result, it can be suggested that supporting the creativity education of gifted students will contribute to the development of computational thinking skills. The results of the study can be evaluated in comparison with future studies.

Kaynakça

  • Aksoy, B (2004). Coğrafya öğretiminde probleme dayalı öğrenme yaklaşımı (Yayımlanmamış doktora tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Anderson, N. D. (2016). A call for computational thinking in undergraduate psychology. Psychology Learning & Teaching, 15(3), 226-234.
  • Avcu, Y. E., & Ayverdi, L. (2020). Examination of the computer programming self-efficacy's prediction towards the computational thinking skills of the gifted and talented students. International Journal of Educational Methodology, 6(2), 259-270.
  • Avcu, Y. E., & Er, K. O. (2020). Developing an instructional design for the field of ICT and software for gifted and talented students. International Journal of Educational Methodology, 6(1), 161-183.
  • Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48–54.
  • Beghetto, R.A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for “mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts 1(2), 73–79.
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In , Vol. 1. Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (p. 25).
  • Burnard, P. (2006). Editorial: Reflecting on the creativity agenda in education. Cambridge Journal of Education, 36(3), 313–318.
  • Chao, J.-Y., Liu, C.-H., & Chen, J. Y. (2014). The influence of courses integrating Atayal culture and LEGO Dacta on the programming ability and creativity of Aboriginal children. Global Journal of Computers & Technology, 1(2), 34–43.
  • CSTA, & ISTE. (2011). Operational definition of computational thinking for K–12 education. Erişim adresi: http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf
  • Çevik, M., Barış, N., Şirin, M., Ortak Kılınç, Ö., Kaplan, Y., Atabey Özdemir, B., Yalçın, H., Şeref, G., Topal, S., & Delice, T. (2021). The effect of digital activities on the technology awareness and computational thinking skills of gifted students (eTwinning project example). International Journal of Modern Education Studies, 5(1), 205-244
  • Davies, L. M., Newton, L. D., & Newton, D. P. (2018). Creativity as a twenty-first-century competence: An exploratory study of provision and reality. Education 3-13, 46(7), 879-891.
  • Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts? Computers & Education, 58(1), 240–249.
  • Ercan Yalman, F., & Çepni, S. (2021). Üstün yetenekli öğrencilerin bilimsel yaratıcılık ve bilimsel problem çözme ile ilgili öz değerlendirmeleri. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 852-881.
  • Eryilmaz, S., & Deniz, G. (2021). Effect of tinkercad on students' computational thinking skills and perceptions: A case of Ankara province. Turkish Online Journal of Educational Technology-TOJET, 20(1), 25-38.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H.H. (2012). How to design and evaluate research in education. (8th ed.). McGraw-Hill Humanities/Social Sciences/Languages.
  • Gagne, F. (2004). Transforming gifts into talents: The DMGT as a developmental theory. High Ability Studies, 15(2), 119-147.
  • Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone. Synthesis lectures on human-centered informatics. San Rafael, CA, USA: Morgan & Claypool
  • Hacıoğlu, Y., & Türk, T. (2018). Üstün yetenekli öğrenciler kendilerini ne kadar yaratıcı buluyor?. Millli Eğitim Dergisi, 220(Özel Sayı), 365-384.
  • Hernández-Torrano, D., & Ibrayeva, L. (2020). Creativity and education: A bibliometric mapping of the research literature (1975–2019). Thinking Skills and Creativity, 35(2020),100625.
  • Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga, M. (2019). Creativity in the acquisition of computational thinking. Interactive Learning Environments, 27(5–6), 628–644.
  • Huang, C., Yang, C., Wang, S., Wu, W., Su, J., & Liang, C. (2019). Evolution of topics in education research: A systematic review using bibliometric analysis. Educational Review, 72(3), 281-297.
  • Israel-Fishelson, R., & Hershkovitz, A. (2022). Studying interrelations of computational thinking and creativity: A scoping review (2011–2020). Computers & Education, 176, 104353.
  • Israel-Fishelson, R., Hershkovitz, A., Eguíluz, A., Garaizar, P., & Guenaga, M. (2021). A log-based analysis of the associations between creativity and computational thinking. Journal of Educational Computing Research, 59(5), 926-959.
  • Voogt, J., P. Fisser, J. Good, P. Mishra, A., & Yadav. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728.
  • Kobsiripat, W. (2015). Effects of the media to promote the scratch programming capabilities creativity of elementary-school students. Procedia-Social and Behavioral Sciences, 174, 227–232.
  • Korkmaz, Ö., Çakır, R., & Özden, M. Y. (2015). Bilgisayarca düşünme beceri düzeyleri ölçeğinin (bdbd) ortaokul düzeyine uyarlanması. Gazi Eğitim Bilimleri Dergisi, 1(2), 143-162.
  • Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569.
  • Liu, M.-C., & Lu, H.-F. (2002). A study on the creative problem-solving process in computer programming. In Proceeding of the international conference on engineering education. Erişim adresi: https://pdfs.semanticscholar.org/057e/f657236382b17b7b3e9865178709def3296b.pdf.
  • Lu, J. J., & Fletcher, G. H. (2009, March). Thinking about computational thinking. In Proceedings of the 40th ACM technical symposium on Computer science education (pp. 260-264).
  • Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
  • Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29).
  • Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., Ramsay, S., & Hazley, M. P. (2013, October). Improving learning of computational thinking using creative thinking exercises in CS-1 computer science courses. In 2013 ieee frontiers in education conference (fie) (pp. 1426-1432). IEEE.
  • Mishra, P., Yadav, A., & Deep-Play Research Group. (2013). Rethinking technology & creativity in the 21st century. TechTrends, 57(3), 10-14.
  • Murcia, K., Pepper, C., Joubert, M., Cross, E., & Wilson, S. (2020). A framework for identifying and developing children’s creative thinking while coding with digital technologies. Issues in Educational Research, 30(4), 1395–1417.
  • National Research Council. (2011). Committee for the Workshops on Computational Thinking: Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: National Academies Press.
  • Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research And Development, 68(1), 463-484.
  • Özdamar, K. (2004). Paket programlar ile istatistik veri analizi 1. Eskişehir: Kaan Kitabevi.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
  • Papert, S. (1996). Computers in the classroom: Agents of change. Washington Post, p. R1.
  • Perez Poch, A., Olmedo Torre, N., Sanchez Carracedo, F., Salan Ballesteros, M. N., & Lopez ́ Alvarez, D. (2016). On the influence of creativity in basic programming learning at a first-year Engineering course. International Journal of Engineering Education, 32(5), 2302–2309.
  • Peteranetz, M. S., Soh, L. K., & Ingraham, E. (2019). Building computational creativity in an online course for non-majors. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 442–448.
  • Plucker, J. A., & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. R. J., Sternberg, E. L., Grigorenko ve J. L. Singer (Editörler). Creativity: From potential to realization içinde (s. 153-168). Washington, DC: American Psychological Association.
  • Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: examining basic programming achievement and computational thinking of 6th-grade students. Education and Information Technologies, 27(7), 9145-9179.
  • Renzulli, J. S., & Reis, S. M. (2021). The three ring conception of giftedness: A change in direction from being gifted to the development of gifted behaviors. In R. J. Sternberg & D. Ambrose (Eds.), Conceptions of giftedness and talent (pp. 335–355). Palgrave Macmillan.
  • Rowlands, S. (2011). Discussion article: Disciplinary boundaries for creativity. Creative Education, 2(1), 47–55.
  • Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing definition. In Paper presented at the 18th annual conference on innovation and technology in computer science education, Canterbury.
  • Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931.
  • Seo, Y.-H., & Kim, J.-H. (2016). Analyzing the effects of coding education through pair programming for the computational thinking and creativity of elementary school students. Indian Journal of Science and Technology, 9(46), 1–5.
  • Shaheen, R. (2010). Creativity and education. Creative Education, 1(3), 166-169.
  • So, H. J., Kim, D., & Ryoo, D. (2020). Trajectories of developing computational thinking competencies: Case portraits of Korean gifted girls. The Asia-Pacific Education Researcher, 29(1), 85-100.
  • Sternberg, R. J. (2002). Raising the achievement of all students: Teaching for successful intelligence. Educational Psychology Review, 14, 383–393.
  • Sternberg, R. J. (2010). WICS: A new model for school psychology. School Psychology International, 31(6), 599-616.
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798.
  • Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Koli Calling Conference on Computing Education Research, 120–129.
  • Tonbuloğlu, B., & Tonbuloğlu, İ. (2019). The effect of unplugged coding activities on computational thinking skills of middle school students. Informatics in Education, 18(2), 403-426.
  • Top, O., & Arabacıoglu, T. (2021). Bilgi işlemsel düşünme: bir sistematik alanyazın taraması. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 527-567.
  • Torrance, E. P. (1974). Torrance tests of creative thinking. Scholastic Testing Service.
  • Treffinger, D. J., Isaksen, S. G., & Stead-Dorval, K. B. (2006). Creative problem solving: An introduction. Singapore: Prufrock Press Inc.
  • Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing Creativity: A guide for educators. National Research Center on the Gifted and Talented.
  • WEF (2023). These are the top 10 job skills of tomorrow – and how long it takes to learn them. Erişim adresi: https://www.weforum.org/agenda/2020/10/top-10-work-skills-of-tomorrow-how-long-it-takes-to-learn-them/
  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
  • Wetzel, S., Milicic, G., & Ludwig, M. (2020). Gifted students’ use of computational thinking skills approaching a graph problem: A case study. In Proceedings of EDULEARN20 Conference (Vol. 6, p. 7th).
  • Whetten, D. A., & Cameron, K.S. (2011). Developing management skills. Pearson Education India
  • Wing, J. M. (2006) Computational thinking. Communucation of ACM, 49(3), 33–35.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
  • Wu, J. J., & Albanese, D. (2010). Asian creativity, chapter one: Creativity across three Chinese societies. Thinking Skills and Creativity, 5(3), 150-154.
  • Yadav, A., & Cooper, S. (2017). Fostering creativity through computing. Communications of the ACM, 60(2), 31-33.
  • Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565-568.
  • Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, T. (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education, 14(1), 1–16.
  • Yıldız Durak, H., Saritepeci, M., & Durak, A. (2023). Modeling of relationship of personal and affective variables with computational thinking and programming. Technology, Knowledge and Learning, 28(1), 165-184.

Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi

Yıl 2023, , 1393 - 1410, 23.10.2023
https://doi.org/10.34056/aujef.1256729

Öz

Dünya genelinde birçok girişim platformuna ve eğitimciye göre yaratıcılık ve hesaplamalı düşünme geleceğin insan gücü ve günümüzün öğrencileri için oldukça önemli beceriler arasında yer almaktadır. Bu iki önemli beceri günümüzde öğretim programlarına da dâhil edilmeye çalışılmaktadır. Bu çalışmada özel yetenekli öğrencilerin yaratıcılık ve hesaplamalı düşünme beceri düzeyi algıları arasındaki ilişkinin incelenmesi ve yaratıcılık düzeyi algısının hesaplamalı düşünme beceri algısını yordama düzeyinin belirlenmesi amaçlanmıştır. Araştırmanın amacı doğrultusunda ilişkisel tarama modeli araştırma modeli olarak belirlenmiştir. Örneklemin seçilmesinde seçkisiz olmayan örnekleme yöntemlerinden biri olan uygun örnekleme yöntemi kullanılmıştır. Bilim ve Sanat Merkezine (BİLSEM) devam eden ortaokul düzeyinde 92 özel yetenekli öğrenci örneklemi oluşturmuştur. Özel yetenekli öğrencilerin hesaplamalı düşünme beceri düzeyi algısının belirlenmesi amacıyla “Bilgisayarca Düşünme Beceri Düzeyleri Ölçeği” ve kendilerine yönelik yaratıcılık algılarını belirlemek amacıyla “Ne Kadar Yaratıcısınız? Ölçeği” kullanılmıştır. Pearson korelasyon analizi ve basit doğrusal regresyon analizi verilerin analizinde kullanılmıştır. Araştırma bulgularına göre yaratıcılık ve hesaplamalı düşünme algısı arasında pozitif, düşük düzeyde ve anlamlı ilişki belirlenmiştir. Araştırmanın bir diğer bulgusu ise özel yetenekli öğrencilerin yaratıcılık düzeyi algısı, hesaplamalı düşünme düzeyi algısının anlamlı bir yordayıcısı olduğudur. Araştırma bulguları alan yazındaki yaratıcılık ve hesaplamalı düşünme arasındaki ilişkiyi destekler niteliktedir. Sonuç olarak özel yetenekli öğrencilerin yaratıcılık eğitimlerinin desteklenmesinin hesaplamalı düşünme becerilerinin gelişimine katkı sunacağı önerilebilir. Konuya ilişkin ileride gerçekleştirilecek farklı araştırmalar ile gerçekleştirilen çalışmanın sonuçları karşılaştırmalı olarak değerlendirilebilir.

Kaynakça

  • Aksoy, B (2004). Coğrafya öğretiminde probleme dayalı öğrenme yaklaşımı (Yayımlanmamış doktora tezi). Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Ankara.
  • Anderson, N. D. (2016). A call for computational thinking in undergraduate psychology. Psychology Learning & Teaching, 15(3), 226-234.
  • Avcu, Y. E., & Ayverdi, L. (2020). Examination of the computer programming self-efficacy's prediction towards the computational thinking skills of the gifted and talented students. International Journal of Educational Methodology, 6(2), 259-270.
  • Avcu, Y. E., & Er, K. O. (2020). Developing an instructional design for the field of ICT and software for gifted and talented students. International Journal of Educational Methodology, 6(1), 161-183.
  • Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the computer science education community? Acm Inroads, 2(1), 48–54.
  • Beghetto, R.A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for “mini-c” creativity. Psychology of Aesthetics, Creativity, and the Arts 1(2), 73–79.
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. In , Vol. 1. Proceedings of the 2012 annual meeting of the American educational research association, Vancouver, Canada (p. 25).
  • Burnard, P. (2006). Editorial: Reflecting on the creativity agenda in education. Cambridge Journal of Education, 36(3), 313–318.
  • Chao, J.-Y., Liu, C.-H., & Chen, J. Y. (2014). The influence of courses integrating Atayal culture and LEGO Dacta on the programming ability and creativity of Aboriginal children. Global Journal of Computers & Technology, 1(2), 34–43.
  • CSTA, & ISTE. (2011). Operational definition of computational thinking for K–12 education. Erişim adresi: http://www.iste.org/docs/pdfs/Operational-Definition-of-Computational-Thinking.pdf
  • Çevik, M., Barış, N., Şirin, M., Ortak Kılınç, Ö., Kaplan, Y., Atabey Özdemir, B., Yalçın, H., Şeref, G., Topal, S., & Delice, T. (2021). The effect of digital activities on the technology awareness and computational thinking skills of gifted students (eTwinning project example). International Journal of Modern Education Studies, 5(1), 205-244
  • Davies, L. M., Newton, L. D., & Newton, D. P. (2018). Creativity as a twenty-first-century competence: An exploratory study of provision and reality. Education 3-13, 46(7), 879-891.
  • Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts? Computers & Education, 58(1), 240–249.
  • Ercan Yalman, F., & Çepni, S. (2021). Üstün yetenekli öğrencilerin bilimsel yaratıcılık ve bilimsel problem çözme ile ilgili öz değerlendirmeleri. Van Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 18(1), 852-881.
  • Eryilmaz, S., & Deniz, G. (2021). Effect of tinkercad on students' computational thinking skills and perceptions: A case of Ankara province. Turkish Online Journal of Educational Technology-TOJET, 20(1), 25-38.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H.H. (2012). How to design and evaluate research in education. (8th ed.). McGraw-Hill Humanities/Social Sciences/Languages.
  • Gagne, F. (2004). Transforming gifts into talents: The DMGT as a developmental theory. High Ability Studies, 15(2), 119-147.
  • Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone. Synthesis lectures on human-centered informatics. San Rafael, CA, USA: Morgan & Claypool
  • Hacıoğlu, Y., & Türk, T. (2018). Üstün yetenekli öğrenciler kendilerini ne kadar yaratıcı buluyor?. Millli Eğitim Dergisi, 220(Özel Sayı), 365-384.
  • Hernández-Torrano, D., & Ibrayeva, L. (2020). Creativity and education: A bibliometric mapping of the research literature (1975–2019). Thinking Skills and Creativity, 35(2020),100625.
  • Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguíluz, A., Garaizar, P., & Guenaga, M. (2019). Creativity in the acquisition of computational thinking. Interactive Learning Environments, 27(5–6), 628–644.
  • Huang, C., Yang, C., Wang, S., Wu, W., Su, J., & Liang, C. (2019). Evolution of topics in education research: A systematic review using bibliometric analysis. Educational Review, 72(3), 281-297.
  • Israel-Fishelson, R., & Hershkovitz, A. (2022). Studying interrelations of computational thinking and creativity: A scoping review (2011–2020). Computers & Education, 176, 104353.
  • Israel-Fishelson, R., Hershkovitz, A., Eguíluz, A., Garaizar, P., & Guenaga, M. (2021). A log-based analysis of the associations between creativity and computational thinking. Journal of Educational Computing Research, 59(5), 926-959.
  • Voogt, J., P. Fisser, J. Good, P. Mishra, A., & Yadav. (2015). Computational thinking in compulsory education: Towards an agenda for research and practice. Education and Information Technologies, 20(4), 715-728.
  • Kobsiripat, W. (2015). Effects of the media to promote the scratch programming capabilities creativity of elementary-school students. Procedia-Social and Behavioral Sciences, 174, 227–232.
  • Korkmaz, Ö., Çakır, R., & Özden, M. Y. (2015). Bilgisayarca düşünme beceri düzeyleri ölçeğinin (bdbd) ortaokul düzeyine uyarlanması. Gazi Eğitim Bilimleri Dergisi, 1(2), 143-162.
  • Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558-569.
  • Liu, M.-C., & Lu, H.-F. (2002). A study on the creative problem-solving process in computer programming. In Proceeding of the international conference on engineering education. Erişim adresi: https://pdfs.semanticscholar.org/057e/f657236382b17b7b3e9865178709def3296b.pdf.
  • Lu, J. J., & Fletcher, G. H. (2009, March). Thinking about computational thinking. In Proceedings of the 40th ACM technical symposium on Computer science education (pp. 260-264).
  • Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
  • Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A. (2014, June). Computational thinking in K-9 education. In Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference (pp. 1-29).
  • Miller, L. D., Soh, L. K., Chiriacescu, V., Ingraham, E., Shell, D. F., Ramsay, S., & Hazley, M. P. (2013, October). Improving learning of computational thinking using creative thinking exercises in CS-1 computer science courses. In 2013 ieee frontiers in education conference (fie) (pp. 1426-1432). IEEE.
  • Mishra, P., Yadav, A., & Deep-Play Research Group. (2013). Rethinking technology & creativity in the 21st century. TechTrends, 57(3), 10-14.
  • Murcia, K., Pepper, C., Joubert, M., Cross, E., & Wilson, S. (2020). A framework for identifying and developing children’s creative thinking while coding with digital technologies. Issues in Educational Research, 30(4), 1395–1417.
  • National Research Council. (2011). Committee for the Workshops on Computational Thinking: Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: National Academies Press.
  • Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research And Development, 68(1), 463-484.
  • Özdamar, K. (2004). Paket programlar ile istatistik veri analizi 1. Eskişehir: Kaan Kitabevi.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc.
  • Papert, S. (1996). Computers in the classroom: Agents of change. Washington Post, p. R1.
  • Perez Poch, A., Olmedo Torre, N., Sanchez Carracedo, F., Salan Ballesteros, M. N., & Lopez ́ Alvarez, D. (2016). On the influence of creativity in basic programming learning at a first-year Engineering course. International Journal of Engineering Education, 32(5), 2302–2309.
  • Peteranetz, M. S., Soh, L. K., & Ingraham, E. (2019). Building computational creativity in an online course for non-majors. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 442–448.
  • Plucker, J. A., & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. R. J., Sternberg, E. L., Grigorenko ve J. L. Singer (Editörler). Creativity: From potential to realization içinde (s. 153-168). Washington, DC: American Psychological Association.
  • Polat, E., & Yilmaz, R. M. (2022). Unplugged versus plugged-in: examining basic programming achievement and computational thinking of 6th-grade students. Education and Information Technologies, 27(7), 9145-9179.
  • Renzulli, J. S., & Reis, S. M. (2021). The three ring conception of giftedness: A change in direction from being gifted to the development of gifted behaviors. In R. J. Sternberg & D. Ambrose (Eds.), Conceptions of giftedness and talent (pp. 335–355). Palgrave Macmillan.
  • Rowlands, S. (2011). Discussion article: Disciplinary boundaries for creativity. Creative Education, 2(1), 47–55.
  • Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing definition. In Paper presented at the 18th annual conference on innovation and technology in computer science education, Canterbury.
  • Sen, C., Ay, Z. S., & Kiray, S. A. (2021). Computational thinking skills of gifted and talented students in integrated STEM activities based on the engineering design process: The case of robotics and 3D robot modeling. Thinking Skills and Creativity, 42, 100931.
  • Seo, Y.-H., & Kim, J.-H. (2016). Analyzing the effects of coding education through pair programming for the computational thinking and creativity of elementary school students. Indian Journal of Science and Technology, 9(46), 1–5.
  • Shaheen, R. (2010). Creativity and education. Creative Education, 1(3), 166-169.
  • So, H. J., Kim, D., & Ryoo, D. (2020). Trajectories of developing computational thinking competencies: Case portraits of Korean gifted girls. The Asia-Pacific Education Researcher, 29(1), 85-100.
  • Sternberg, R. J. (2002). Raising the achievement of all students: Teaching for successful intelligence. Educational Psychology Review, 14, 383–393.
  • Sternberg, R. J. (2010). WICS: A new model for school psychology. School Psychology International, 31(6), 599-616.
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798.
  • Tedre, M., & Denning, P. J. (2016). The long quest for computational thinking. Koli Calling Conference on Computing Education Research, 120–129.
  • Tonbuloğlu, B., & Tonbuloğlu, İ. (2019). The effect of unplugged coding activities on computational thinking skills of middle school students. Informatics in Education, 18(2), 403-426.
  • Top, O., & Arabacıoglu, T. (2021). Bilgi işlemsel düşünme: bir sistematik alanyazın taraması. Uludağ Üniversitesi Eğitim Fakültesi Dergisi, 34(2), 527-567.
  • Torrance, E. P. (1974). Torrance tests of creative thinking. Scholastic Testing Service.
  • Treffinger, D. J., Isaksen, S. G., & Stead-Dorval, K. B. (2006). Creative problem solving: An introduction. Singapore: Prufrock Press Inc.
  • Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing Creativity: A guide for educators. National Research Center on the Gifted and Talented.
  • WEF (2023). These are the top 10 job skills of tomorrow – and how long it takes to learn them. Erişim adresi: https://www.weforum.org/agenda/2020/10/top-10-work-skills-of-tomorrow-how-long-it-takes-to-learn-them/
  • Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., et al. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147.
  • Wetzel, S., Milicic, G., & Ludwig, M. (2020). Gifted students’ use of computational thinking skills approaching a graph problem: A case study. In Proceedings of EDULEARN20 Conference (Vol. 6, p. 7th).
  • Whetten, D. A., & Cameron, K.S. (2011). Developing management skills. Pearson Education India
  • Wing, J. M. (2006) Computational thinking. Communucation of ACM, 49(3), 33–35.
  • Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717-3725.
  • Wu, J. J., & Albanese, D. (2010). Asian creativity, chapter one: Creativity across three Chinese societies. Thinking Skills and Creativity, 5(3), 150-154.
  • Yadav, A., & Cooper, S. (2017). Fostering creativity through computing. Communications of the ACM, 60(2), 31-33.
  • Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: Pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60(6), 565-568.
  • Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, T. (2014). Computational thinking in elementary and secondary teacher education. ACM Transactions on Computing Education, 14(1), 1–16.
  • Yıldız Durak, H., Saritepeci, M., & Durak, A. (2023). Modeling of relationship of personal and affective variables with computational thinking and programming. Technology, Knowledge and Learning, 28(1), 165-184.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eğitim Üzerine Çalışmalar
Bölüm Araştırma Makalesi
Yazarlar

Nilgun Kirişçi 0000-0003-0925-7331

Yayımlanma Tarihi 23 Ekim 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kirişçi, N. (2023). Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, 7(4), 1393-1410. https://doi.org/10.34056/aujef.1256729
AMA Kirişçi N. Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi. Ekim 2023;7(4):1393-1410. doi:10.34056/aujef.1256729
Chicago Kirişçi, Nilgun. “Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları Ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi”. Anadolu Üniversitesi Eğitim Fakültesi Dergisi 7, sy. 4 (Ekim 2023): 1393-1410. https://doi.org/10.34056/aujef.1256729.
EndNote Kirişçi N (01 Ekim 2023) Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi 7 4 1393–1410.
IEEE N. Kirişçi, “Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi”, Anadolu Üniversitesi Eğitim Fakültesi Dergisi, c. 7, sy. 4, ss. 1393–1410, 2023, doi: 10.34056/aujef.1256729.
ISNAD Kirişçi, Nilgun. “Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları Ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi”. Anadolu Üniversitesi Eğitim Fakültesi Dergisi 7/4 (Ekim 2023), 1393-1410. https://doi.org/10.34056/aujef.1256729.
JAMA Kirişçi N. Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi. 2023;7:1393–1410.
MLA Kirişçi, Nilgun. “Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları Ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi”. Anadolu Üniversitesi Eğitim Fakültesi Dergisi, c. 7, sy. 4, 2023, ss. 1393-10, doi:10.34056/aujef.1256729.
Vancouver Kirişçi N. Özel Yetenekli Öğrencilerin Hesaplamalı Düşünme Beceri Düzeyi Algıları ile Yaratıcılık Düzeyi Algıları Arasındaki İlişkinin İncelenmesi. Anadolu Üniversitesi Eğitim Fakültesi Dergisi. 2023;7(4):1393-410.

Eğitim Fakültesi Dergisi - Anadolu Üniversitesi Eğitim Fakültesi

Tel: +90 222 335 05 79          Faks: +90 222 335 05 73          E-posta: aujef@anadolu.edu.tr

İnternet Adresi: dergipark.org.tr/tr/pub/aujef

ZZPdzvlpK9r_Df9C3M7j1rNRi7hhHRvPhlklJ3lfi5jk86Jd1s0Y5wcQ1QgbVaAP5Q=w300-rw  32GbAQWrubLZX4mVPClpLN0fRbAd3ru5BefccDAj7nKD8vz-_NzJ1ph_4WMYNefp3A=w300-rw  aYbdIM1abwyVSUZLDKoE0CDZGRhlkpsaPOg9tNnBktUQYsXflwknnOn2Ge1Yr7rImGk=w300-rw


by-nc-sa.png

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.