Research Article
BibTex RIS Cite

Effect of Bacterial Pre-Treatment on Plant Growth and Dry Matter Accumulation in Lentil

Year 2025, Volume: 14 Issue: 1, 88 - 95, 30.06.2025
https://doi.org/10.29278/azd.1454848

Abstract

Objective: Microbiological fertilizer usage is an expanding phenomenon in agriculture worldwide due to conformity to sustainable agriculture model. Nitrogen fixing and phosphate solubilizing bacteria species that can live symbiotic or free in soils have been used in both legumes and other crops. This experiment was laid out to investigated the effectiveness of rhizobia and plant growth promoting bacteria (PGPB) inoculation on plant growth and dry matter accumulation in different lentil cultivars.
Materials and Methods: The experiment was conducted according to completely randomized factorial design with three replications at growth chamber of Field Crops Department, Siirt University, Siirt. A rhizobia strain, Rhizobium leguminosarum biover. to vicia, and two PGPB strains (TV83D and TV119E) were treated to six lentil cultivars and compared with non-inoculated control plants.
Results: Analysis of variance indicated that cultivar, bacterial inoculation and CxB interactions caused statistically significant differences (p<0.01) in all characteristics including total biomass, plant and root length, dry matter accumulation in roots and shoots. According to the results, shoot (plumula) fresh weight, root fresh weight, plant length, root length, shoot dry weight and root dry weight were changed between 0.171-0.311 g, 0.150-0.268 g, 12.2-18.5 cm, 11.3-18.8 cm, 0.0186-0.0303 g and 0.0233-0.0381 g, respectively. Out of lentil cultivars, Seyran-96 and Yerli kırmızı exhibited higher growth performance. The TV83D, capable of high nitrogen fixation, promoted plant growth and dry matter accumulation compared with control and other beneficial microorganisms.
Conclusion: Biopriming with nitrogen fixing microorganisms provides to enhance plants during early growing stage, therefore, it might be used as a sustainable strategy in lentil cultivation.

Project Number

2020-SİÜZİR-038

References

  • Ahmad, Z., Tariq, R.M.S., Ramzan, M., Bukhari, M.A., Raza, A., Iqbal, M.A., Meena, R.S., Islam, M.S., Sytar, O., Godswill, N-N., Wasaya, A., Singh, K., Hossain, A., Raza, M.A., Hasanuzzaman, M., Soysal, S., Erman, M., Cig, F., Ceritoglu, M., Açıkbaş, S., Uçar, Ö., Özçinar, A.B., Kılıç, R., & Sabagh, A.E.L. (2022). Biological nitrogen fixation: An analysis of intoxicating tribulations from pesticides for sustainable legume production. In: M. Hasanuzzaman, G.J., Ahammed, K. Nahar (Eds.), Managing Plant Production Under Changing Environment (pp. 351-374). Springer Nature, Singapore. https://doi. org/10.1007/978-981-16-5059-8_14
  • Ajijah, N., Fiodor, A., Pandey, A.K., Rana, A., & Pranaw, K. (2023). Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: A Multifaceted Agent for Sustainable Agriculture. Diversity, 15(1), 112.
  • Anonymous. (2023, February). Lentil production worldwide. Erişim adresi https://www.statpub.com/index.php/statistics
  • Barlog, P., Grzebisz, W., & Łukowiak, R. (2022). Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 11(14), 1855.
  • Bhat, M.A., Kumar, V., Bhat, M.A., Wani, I.A., Dar, F.L., Farooq, I., Bhatti, F., Koser, R., Rahman, S., & Jan, A.T. (2020). Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology, 11, 1952.
  • Ceritoglu, M., & Erman, M. (2020). Effect of vermicompost application at different sowing dates on some phenological, agronomic and yield traits in lentil. Journal of International Environmental Application and Science, 15(3), 158-166.
  • Çığ, F., Erman, M., & Ceritoğlu, M. (2021). Combined application of microbial inoculation and biochar to mitigate drought stress in wheat. Journal of the Institute of Science and Technology, 11(Özel sayı), 3528-3538.
  • Çığ, F., Erman, M., İnal, B., Bektaş, H., Sonkurt, M., Mirzapour, M., & Ceritoglu, M. (2022). Mitigation of drought stress in wheat by bio-priming by PGPB containing ACC deaminase activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53(1), 51-57.
  • Dwivedi, S.L., Sahrawat, K.L., Upadhyaya, H.D., Mengoni, A., Galardini, M., Bazzicalupo, M., Biondi, E.G., Hungria, M., Kaschuk, G., Blair, M.W., & Ortiz, R. (2015). Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Advances in Agronomy, 129, 1-116.
  • Erman, M., Çığ, F., & Bakırtaş, E. (2012). Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 5(1), 64-67.
  • Erman, M., Çığ, F., & Ceritoglu, M. (2022b). Mercimekte çimlenme ve fide gelişimi üzerine optimum PGPB-priming protokolünün belirlenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 62-70.
  • Erman, M., Çığ, F., Ceritoglu, F., & Ceritoglu, M. (2022a). Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity. Journal of Central European Agriculture, 23(3), 582-591.
  • Glick, B.R. (2020). Beneficial plant-bacterial interactions (2nd edn). Cham: Springer Nature Switzerland. Haque, M.A., Bala, P., & Azad, A.K. (2014). Performance of lentil varities as influenced by different Rhizobium inoculations. Bangladesh Agronomy Journal, 17(1), 41-46.
  • Heinemann, B., & Hildebrandt, T.M. (2021). The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72(13), 4634-4645.
  • İşler, E., & Coşkan, A. (2009). Farklı bakteri (Bradyrhizobium japonicum) aşılama yöntemlerinin soyada azot fiksasyonu ve tane verimine etkisi. Journal of Agricultural Sciences, 15(4), 324-331.
  • Jarpa-parra, M. (2017). Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science & Technology, 53(4), 892-903. https://doi.org/10.1111/ijfs.13685
  • Kumar, A., Chandra, D., Pallavi, & Sharma, A.K. (2022). Impact of seed applied rhizobacterial inoculants on growth of wheat (Triticum aestivum) and cowpea [Vigna unguiculata] and their Influence on rhizospheric microbial diversity. Agricultural Research, 11, 1-14.
  • Kumar, R., & Chandra, R. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World Journal of Agricultural Sciences, 4(3), 297-301.
  • Kumar, S., Choudhary, A., Rana, K., Sarker, A., & Singh, M. (2018). Bio-fortification potential of global wild annual lentil core collection. PLOS One, 13, e0191122. doi:10.1371/journal.pone.0191122.c
  • Lucas García, J.A., Probanza, A., Ramos, B., Barriuso, J., & Manero, F.J.G. (2004). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143-153.
  • Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. Plants, 9(1), 97.
  • Matse, D.T., Huang, C.H., Huang, Y.M., & Yen, M.Y. (2020). Effects of co-inoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. Journal of Plant Nutrition, 43(5), 739-752.
  • Mengel, K., Kirkby, E.A., Kosegarten, H., & Appel, T. (2001). Plant nutrients. In: K. Mengel, E.A. Kirkby, H. Kosegarten, T. Appel (Eds.), Principles of Plant Nutrition (pp. 1-13). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_1
  • Neugschwandtner, R.W., Bernhuber, A., Kammlander, S., Wagentristl, H., Klimek-Kopyra, A., Lošák, T., Zholamanov, K.K., & Kaul, H-P. (2021). Nitrogen yields and biological nitrogen fixation of winter grain legumes. Agronomy, 11(4), 681.
  • Ortega Perez, R., Nieto García, J.C., Gallegos-Cedillo, V.M., Domene Ruiz, M.Á., Santos Hernández, M., Nájera, C., Miralles Mellado, I., & Diánez Martínez, F. (2023). Biofertilizers enriched with PGPB improve soil fertility and the productivity of an intensive tomato crop. Agronomy, 13(9), 2286.
  • Reed, L., & Glick, B.R. (2023). the recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture, 13(5), 1089.
  • Rosier, A., Medeiros, F.H.V. & Bais, H.P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant and Soil, 428, 35-55.
  • Santoyo, G., Urtis-Flores, C.A., Loeza-Lara, P.D., Orozco-Mosqueda, M.C., & Glick, B.R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475.
  • Sharma, P., Sangwan, S., Kaur, H., Patra, A., Anamika, & Mehta, S. (2023). Diversity and evolution of nitrogen fixing bacteria. In: N. Singh, A. Chattopadhyay, E. Lichtfouse (Eds) Sustainable Agriculture Reviews 60 (pp. 95-120). Springer, Cham. https://doi.org/10.1007/978-3-031-24181-9_5
  • Soysal, S., & Erman, M., 2020. Siirt ekolojik koşullarında mikrobiyolojik ve inorganik gübrelemenin nohut (Cicer arietinum L.)’un verim, verim öğeleri ve nodülasyonu üzerine etkilerinin araştırılması. ISPEC Tarım Bilimleri Dergisi, 4(3), 649-670.
  • Sun, X., Chen, F., Yuan, L., & Mi, G. (2020a). The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 251, 84.
  • Sun, Y., Wang, M., Mur, L.A.J., Shen, Q., & Guo, S. (2020b). Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 21(2), 572.
  • Tavakoli, E., Fatehi, F., Rengasamy, P., & McDonald, G. (2012). A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. Journal of Experimental Botany, 63(10), 3853-3868.
  • Yang, Q., Zhao, D., & Liu, Q. (2020). Connections between amino acid metabolisms in plants: Lysine as an example. Frontiers in Plant Science, 11, 928.
  • Zaib, S., Zubair, A., Abbas, S., Hussain, J., Ahmad, I., & Shakeel, S. (2023). Plant growth-promoting rhizobacteria (PGPR) reduce adverse effects of salinity and drought stresses by regulating nutritional profile of barley. Applied and Environmental Soil Science, 2023, 7261784.

Bakteriyel Ön Uygulamalarin Mercimekte Bitki Gelişimi ve Kuru Madde Birikimi Üzerine Etkisi

Year 2025, Volume: 14 Issue: 1, 88 - 95, 30.06.2025
https://doi.org/10.29278/azd.1454848

Abstract

Amaç: Mikrobiyolojik gübre kullanımı, sürdürülebilir tarım modeline uyumlu olması nedeniyle dünya çapında tarımda yaygınlaşan bir fenomendir. Toprakta simbiyotik veya serbest yaşayabilen azot bağlayıcı ve fosfat çözünürlüğünü arttıran bakteri türleri, hem baklagillerde hem de diğer ürünlerde kullanılmıştır. Bu araştırma, farklı mercimek çeşitlerinde rizobium ve bitki büyümesini teşvik eden bakteri (PGPB) inokülasyonunun bitki büyümesi ve kuru madde birikimi üzerindeki etkinliğini araştırmak amacıyla düzenlenmiştir.
Materyal ve Yöntem: Araştırma, Siirt Üniversitesi Tarla Bitkileri Bölümü büyüme odasında üç tekrarlamalı olarak tesadüf parsellerinde faktöriyel deneme desenine göre yapılmıştır. Bir rizobium suşu (Rhizobium leguminosarum biover. to vicia) ve iki PGPB suşu (TV83D ve TV119E), altı mercimek çeşidine uygulanmış ve kontrol bitkileriyle karşılaştırılmıştır.
Araştırma Bulguları: Varyans analizi, çeşit, bakteri inokülasyonu ve CxB etkileşimlerinin tüm karakterlerde (toplam biyo-kütle, bitki ve kök uzunluğu, köklerde ve sürgünlerde kuru madde birikimi dahil olmak üzere) istatistiksel olarak önemli farklılıklara neden olduğunu göstermiştir (p<0.01). Sonuçlara göre, sürgün (plumula) yaş ağırlığı, kök yaş ağırlığı, bitki uzunluğu, kök uzunluğu, sürgün kuru ağırlığı ve kök kuru ağırlığı sırasıyla 0.171-0.311 g, 0.150-0.268 g, 12.2-18.5 cm, 11.3-18.8 cm, 0.0186-0.0303 g ve 0.0233-0.0381 g arasında değişmiştir. Mercimek çeşitlerinden, Seyran-96 ve Yerli kırmızı daha yüksek gelişme performansı sergilemiştir. Yüksek azot bağlama kapasitesine sahip olan TV83D, kontrol ve diğer faydalı mikroorganizmalara göre bitki büyümesini ve kuru madde birikimini daha fazla teşvik etmiştir.
Sonuç: Azot bağlayıcı mikroorganizmalarla biyopriming, bitkilerin erken büyüme aşamasında gelişimini artırabilir ve bu nedenle mercimek yetiştiriciliğinde sürdürülebilir bir strateji olarak kullanılabilir.

Supporting Institution

Siirt Üniversitesi

Project Number

2020-SİÜZİR-038

Thanks

Bu çalışma, Siirt Üniversitesi Bilimsel Araştırmalar Projeleri Koordinatörlüğü tarafından 2020-SİÜZİR-038 nolu proje kapsamında desteklenmiştir.

References

  • Ahmad, Z., Tariq, R.M.S., Ramzan, M., Bukhari, M.A., Raza, A., Iqbal, M.A., Meena, R.S., Islam, M.S., Sytar, O., Godswill, N-N., Wasaya, A., Singh, K., Hossain, A., Raza, M.A., Hasanuzzaman, M., Soysal, S., Erman, M., Cig, F., Ceritoglu, M., Açıkbaş, S., Uçar, Ö., Özçinar, A.B., Kılıç, R., & Sabagh, A.E.L. (2022). Biological nitrogen fixation: An analysis of intoxicating tribulations from pesticides for sustainable legume production. In: M. Hasanuzzaman, G.J., Ahammed, K. Nahar (Eds.), Managing Plant Production Under Changing Environment (pp. 351-374). Springer Nature, Singapore. https://doi. org/10.1007/978-981-16-5059-8_14
  • Ajijah, N., Fiodor, A., Pandey, A.K., Rana, A., & Pranaw, K. (2023). Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: A Multifaceted Agent for Sustainable Agriculture. Diversity, 15(1), 112.
  • Anonymous. (2023, February). Lentil production worldwide. Erişim adresi https://www.statpub.com/index.php/statistics
  • Barlog, P., Grzebisz, W., & Łukowiak, R. (2022). Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 11(14), 1855.
  • Bhat, M.A., Kumar, V., Bhat, M.A., Wani, I.A., Dar, F.L., Farooq, I., Bhatti, F., Koser, R., Rahman, S., & Jan, A.T. (2020). Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology, 11, 1952.
  • Ceritoglu, M., & Erman, M. (2020). Effect of vermicompost application at different sowing dates on some phenological, agronomic and yield traits in lentil. Journal of International Environmental Application and Science, 15(3), 158-166.
  • Çığ, F., Erman, M., & Ceritoğlu, M. (2021). Combined application of microbial inoculation and biochar to mitigate drought stress in wheat. Journal of the Institute of Science and Technology, 11(Özel sayı), 3528-3538.
  • Çığ, F., Erman, M., İnal, B., Bektaş, H., Sonkurt, M., Mirzapour, M., & Ceritoglu, M. (2022). Mitigation of drought stress in wheat by bio-priming by PGPB containing ACC deaminase activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53(1), 51-57.
  • Dwivedi, S.L., Sahrawat, K.L., Upadhyaya, H.D., Mengoni, A., Galardini, M., Bazzicalupo, M., Biondi, E.G., Hungria, M., Kaschuk, G., Blair, M.W., & Ortiz, R. (2015). Advances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumes. Advances in Agronomy, 129, 1-116.
  • Erman, M., Çığ, F., & Bakırtaş, E. (2012). Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 5(1), 64-67.
  • Erman, M., Çığ, F., & Ceritoglu, M. (2022b). Mercimekte çimlenme ve fide gelişimi üzerine optimum PGPB-priming protokolünün belirlenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 62-70.
  • Erman, M., Çığ, F., Ceritoglu, F., & Ceritoglu, M. (2022a). Plant growth promoting bacteria enhances photosynthesis, nodulation and root system architecture in lentil under lead toxicity. Journal of Central European Agriculture, 23(3), 582-591.
  • Glick, B.R. (2020). Beneficial plant-bacterial interactions (2nd edn). Cham: Springer Nature Switzerland. Haque, M.A., Bala, P., & Azad, A.K. (2014). Performance of lentil varities as influenced by different Rhizobium inoculations. Bangladesh Agronomy Journal, 17(1), 41-46.
  • Heinemann, B., & Hildebrandt, T.M. (2021). The role of amino acid metabolism in signaling and metabolic adaptation to stress-induced energy deficiency in plants. Journal of Experimental Botany, 72(13), 4634-4645.
  • İşler, E., & Coşkan, A. (2009). Farklı bakteri (Bradyrhizobium japonicum) aşılama yöntemlerinin soyada azot fiksasyonu ve tane verimine etkisi. Journal of Agricultural Sciences, 15(4), 324-331.
  • Jarpa-parra, M. (2017). Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. International Journal of Food Science & Technology, 53(4), 892-903. https://doi.org/10.1111/ijfs.13685
  • Kumar, A., Chandra, D., Pallavi, & Sharma, A.K. (2022). Impact of seed applied rhizobacterial inoculants on growth of wheat (Triticum aestivum) and cowpea [Vigna unguiculata] and their Influence on rhizospheric microbial diversity. Agricultural Research, 11, 1-14.
  • Kumar, R., & Chandra, R. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World Journal of Agricultural Sciences, 4(3), 297-301.
  • Kumar, S., Choudhary, A., Rana, K., Sarker, A., & Singh, M. (2018). Bio-fortification potential of global wild annual lentil core collection. PLOS One, 13, e0191122. doi:10.1371/journal.pone.0191122.c
  • Lucas García, J.A., Probanza, A., Ramos, B., Barriuso, J., & Manero, F.J.G. (2004). Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant and Soil, 267, 143-153.
  • Mahmud, K., Makaju, S., Ibrahim, R., & Missaoui, A. (2020). Current progress in nitrogen fixing plants and microbiome research. Plants, 9(1), 97.
  • Matse, D.T., Huang, C.H., Huang, Y.M., & Yen, M.Y. (2020). Effects of co-inoculation of Rhizobium with plant growth promoting rhizobacteria on the nitrogen fixation and nutrient uptake of Trifolium repens in low phosphorus soil. Journal of Plant Nutrition, 43(5), 739-752.
  • Mengel, K., Kirkby, E.A., Kosegarten, H., & Appel, T. (2001). Plant nutrients. In: K. Mengel, E.A. Kirkby, H. Kosegarten, T. Appel (Eds.), Principles of Plant Nutrition (pp. 1-13). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1009-2_1
  • Neugschwandtner, R.W., Bernhuber, A., Kammlander, S., Wagentristl, H., Klimek-Kopyra, A., Lošák, T., Zholamanov, K.K., & Kaul, H-P. (2021). Nitrogen yields and biological nitrogen fixation of winter grain legumes. Agronomy, 11(4), 681.
  • Ortega Perez, R., Nieto García, J.C., Gallegos-Cedillo, V.M., Domene Ruiz, M.Á., Santos Hernández, M., Nájera, C., Miralles Mellado, I., & Diánez Martínez, F. (2023). Biofertilizers enriched with PGPB improve soil fertility and the productivity of an intensive tomato crop. Agronomy, 13(9), 2286.
  • Reed, L., & Glick, B.R. (2023). the recent use of plant-growth-promoting bacteria to promote the growth of agricultural food crops. Agriculture, 13(5), 1089.
  • Rosier, A., Medeiros, F.H.V. & Bais, H.P. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant and Soil, 428, 35-55.
  • Santoyo, G., Urtis-Flores, C.A., Loeza-Lara, P.D., Orozco-Mosqueda, M.C., & Glick, B.R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10(6), 475.
  • Sharma, P., Sangwan, S., Kaur, H., Patra, A., Anamika, & Mehta, S. (2023). Diversity and evolution of nitrogen fixing bacteria. In: N. Singh, A. Chattopadhyay, E. Lichtfouse (Eds) Sustainable Agriculture Reviews 60 (pp. 95-120). Springer, Cham. https://doi.org/10.1007/978-3-031-24181-9_5
  • Soysal, S., & Erman, M., 2020. Siirt ekolojik koşullarında mikrobiyolojik ve inorganik gübrelemenin nohut (Cicer arietinum L.)’un verim, verim öğeleri ve nodülasyonu üzerine etkilerinin araştırılması. ISPEC Tarım Bilimleri Dergisi, 4(3), 649-670.
  • Sun, X., Chen, F., Yuan, L., & Mi, G. (2020a). The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. Planta, 251, 84.
  • Sun, Y., Wang, M., Mur, L.A.J., Shen, Q., & Guo, S. (2020b). Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences, 21(2), 572.
  • Tavakoli, E., Fatehi, F., Rengasamy, P., & McDonald, G. (2012). A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. Journal of Experimental Botany, 63(10), 3853-3868.
  • Yang, Q., Zhao, D., & Liu, Q. (2020). Connections between amino acid metabolisms in plants: Lysine as an example. Frontiers in Plant Science, 11, 928.
  • Zaib, S., Zubair, A., Abbas, S., Hussain, J., Ahmad, I., & Shakeel, S. (2023). Plant growth-promoting rhizobacteria (PGPR) reduce adverse effects of salinity and drought stresses by regulating nutritional profile of barley. Applied and Environmental Soil Science, 2023, 7261784.
There are 35 citations in total.

Details

Primary Language English
Subjects Cereals and Legumes
Journal Section Makaleler
Authors

Sipan Soysal 0000-0002-0840-6609

Özge Uçar 0000-0002-4650-4998

Murat Erman 0000-0002-1435-1982

Fatih Çığ 0000-0002-4042-0566

Project Number 2020-SİÜZİR-038
Publication Date June 30, 2025
Submission Date March 18, 2024
Acceptance Date October 3, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Soysal, S., Uçar, Ö., Erman, M., Çığ, F. (2025). Effect of Bacterial Pre-Treatment on Plant Growth and Dry Matter Accumulation in Lentil. Akademik Ziraat Dergisi, 14(1), 88-95. https://doi.org/10.29278/azd.1454848