Research Article
BibTex RIS Cite

İlköğretim 5. Sınıf Öğrencilerinin Uzunluk Kavrayışları

Year 2019, , 807 - 836, 31.12.2019
https://doi.org/10.17522/balikesirnef.537618

Abstract

Çalışmada ilköğretim 5. sınıf (11 yaş) iki öğrencinin uzunluk kavramına dair kavrayışlarının incelenmesi amaçlanmaktadır. Nitel araştırma yöntemine sahip araştırma bir durum çalışmasıdır. Katılımcılar amaçlı örnekleme yönteminden kolay ulaşılabilir ve ölçüt örnekleme yöntemleri kullanılarak belirlenmiştir. Çalışmanın verileri yarı yapılandırılmış klinik görüşmeler yoluyla toplanmış olup, içerik analizi yöntemiyle analiz edilmiştir. Uzunluk kavramı ölçme kavramına ait karakteristikler çerçevesinde ele alınmıştır. Çalışmada elde edilen bulgulara göre, öğrencilerin nesneleri uzunlukları bakımından doğrudan ve dolaylı olarak karşılaştırabildikleri, uzunluk niteliğine uygun birim seçebildikleri ve geçişliliğin ve eş birim kullanımına olan ihtiyacın farkında oldukları, ancak uzunluk niteliğinin farklı temsilleri olan genişlik ve kalınlığı alan veya hacim kavramından ayırt edemedikleri, cetvel kullanımını ve cetvelde sıfırı, diğer sayıları ve çentikleri ve uzunluk ölçme eyleminde birim kavramını anlamlandırmada güçlükler yaşadıkları görülmüştür.

References

  • Argün, Z., Arıkan, A., Bulut, S., & Halıcıoğlu, S. (2014). Temel Matematik kavramların künyesi. Ankara: Gazi.
  • Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children's developing abstractions for linear measurement. Cognition and Instruction, 21(4), 475-520.
  • Bishop, A. J. (1988). Mathematics education in its cultural context. Educational studies in mathematics, 19(2), 179-191.
  • Blume, G. W., Galindo, E., & Walcott, C. (2007). Performance in measurement and geometry from the viewpoint of Principles and Standards for School Mathematics. Results and interpretations of the 2003 Mathematics Assessment of the National Assessment of Educational Progress, 95-138.
  • Boulton-Lewis, G. M., Wilss, L. A., & Mutch, S. L. (1996). An analysis of young children's strategies and use of devices for length measurement. The Journal of Mathematical Behavior, 15(3), 329-347.
  • Bragg, P., & Outhred, L. (2004). A measure of rulers-the importance of units in a measure. Paper presented at the 28th Conference of the International Group for the Psychology of Mathematics Education.
  • Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and numerical predictors of measurement performance: The moderating effects of community income and gender. Journal of Educational Psychology, 103(2), 296.
  • Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education, (pp. 308- 327). Hillsdale, NJ: Erlbaum.
  • Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5-11.
  • Clements, D. H., Battista, M. T., Sarama, J., Swaminathan, S., & McMillen, S. (1997). Students' development of length concepts in a Logo-based unit on geometric paths. Journal for Research in Mathematics Education, 70-95.
  • Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  • Clements, D., & Stephan, M. (2004). Measurement in PreK-2 Mathematics. In D. Clements, J. Sarama, A. M. Di-Biase (Eds.), Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education, (pp. 299-321). Mahwah, New Jersey: Lawrence Erlbaum.
  • Curry, M., Mitchelmore, M., & Outhred, L. (2006). Development of children’s understanding of length, area, and volume principles. Proceedings of the International Group for the Psychology of Mathematics Education, 2, 377–384.
  • Dietiker, L. C., Gonulates, F., & Smith, J. P. (2011). Understanding linear measure. Teaching Children's Mathematics, 18(4), 252-259.
  • Feza-Piyose, N. (2012). Language: A cultural capital for conceptualizing mathematics knowledge. International Electronic Journal of Mathematics Education, 7(2), 62-79.
  • Gravemeijer K., Figueiredo, N., Feijs, E., van Galen, F., Keijzer, R., & Munk, F. (2016). Measurement and geometry in upper primary school. Springer.
  • Güven, D., & Argün, Z. (2018). Width, length, and height conceptions of students with learning disabilities. Issues in Educational Research, 28(1), 77-96.
  • Herendiné-Kónya, E. (2015, February). The level of understanding geometric measurement. In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education (pp. 536-542).
  • Hiebert, J. (1981). Cognitive Development and Learning Linear Measurement. Journal for Research in Mathematics Education, 12(3), 197-211.
  • Hiebert, J. (1984). Why do some children have trouble learning measurement concepts?. The Arithmetic Teacher, 31(7), 19-24.
  • Kamii, C., & Clark, F. B. (1997). Measurement of length: The need for a better approach to teaching. School Science and Mathematics, 97(3), 116-121.
  • Kamii, C. (1995, October). Why is the use of a ruler so hard? Paper presented at the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, The Ohio State University, Columbus, OH.
  • Kayhan, H. C., & Argün, Z. (2014). İlköğretim öğrencilerinin uzunluk ölçme aracının çalışma biçimini bilme ve kullanma durumları arasındaki ilişki. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 31(2).
  • Lehrer, R. (2003). Developing understanding of measurement. A Research Companion to Principles and Standards for School Mathematics, 179-192.
  • Levine, S. C., Kwon, M. K. Huttenlocher, J., Ratliff, K., & Deitz, K. (2009, January). Children's understanding of ruler measurement and units of measure: A training study. Proceedings of the Annual Meeting of the Cognitive Science Society, 31(31), 1-1.
  • Machaba, F. M. (2016). The concepts of area and perimeter: Insights and misconceptions of Grade 10 learners. Pythagoras, 37(1), 304.
  • Marshall, L. (1997). Year 7 students' understanding of the relationship between area and perimeter. Retrieved from http://ro.ecu.edu.au/ theses/900Milli Eğitim Bakanlığı (2013). Ortaokul matematik (5-8. sınıf) dersi öğretim programı. Ankara: MEB.
  • National Council of Teachers of Mathematics (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: A quest for coherence. Reston, VR: NCTM.
  • Nührenbörger, M. (2001, March). Children’s measurement thinking in the context of length. Paper presented at the Annual Conference on Didactics of Mathematics, Ludwigsburg, Germany.
  • Outhred, L., & McPhail, D. (2000). A framework for teaching early measurement. In Proceedings of the Mathematics Education Research Group of Australasia, 23, 487-494. Fremantle, WA: MERGA.
  • Outhred, L. N., & Mitchelmore, M. C. (2000). Young children's intuitive understanding of rectangular area measurement. Journal for research in mathematics education, 31(2), 144-167.
  • Outhred, L., Mitchelmore, M., McPhail, D., & Gould, P. (2003). Count me into measurement: A program for the early elementary school. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: Yearbook, (pp. 81-99). Reston: National Council of Teachers of Mathematics.
  • Reinke, K. S. (1997). Area and perimeter: Preservice teachers' confusion. School Science and Mathematics, 97(2), 75-77.
  • Saraswathi, L. S. (1989). Practices in linear measurements in rural tamil-nadu: Implications for adult education programs. Journal of Education and Social Change, 3(1), 29-46.
  • Smith, J. P., Tan-Sisman, G., Dietiker, L., Figueras, H., Males, L., Lee, K., … Chang, K. (2008). Framing the analysis of written measurement curricula. In Poster presented at American Educational Research Association, 2008 annual meeting: Research on schools, neighborhoods, and communities: Toward civic responsibility, New York.
  • Smith, J. P., van den Heuvel-Panhuizen, M., & Teppo, A. R. (2011). Learning, teaching, and using measurement: introduction to the issue. ZDM, 46, 617–620.
  • Solomon, T. L., Vasilyeva, M., Huttenlocher, J., & Levine, S. C. (2015). Minding the gap: Children’s difficulty conceptualizing spatial intervals as linear measurement units. Developmental Psychology, 51(11), 1564.
  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: SAGE.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education, (pp. 267-306). Mahwah, New Jersey: Lawrence Erlbaum.
  • Stephan, M., & Clements, D. H. (2003). Linear and area measurement in prekindergarten to grade 2. Learning and Teaching Measurement, 3-
  • Szilágyi, J., Clements, D. H., & Sarama, J. (2013). Young children's understandings of length measurement: Evaluating a learning trajectory. Journal for Research in Mathematics Education, 44(3), 581-620.
  • Şişman, G. T. Ş., & Aksu, M. (2009). Seventh grade students’ success on the topics of area and perimeter. Elementary Education Online, 8(1), 243-253.
  • Tan-Sisman, G., & Aksu, M. (2012). The length measurement in the turkish mathematics curriculum: Its potential to contribute to students’learning. International Journal of Science and Mathematics Education, 10(2), 363-385.
  • Yenilmez, K., & Pargan, A. Ş. (2008). İlköğretim ikinci sinif öğrencilerinin standart uzunluk ölçme birimine ilişkin algıları. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 9(2).
  • Yin, R. K. (2013). Case study research: Design and methods. SAGE.

A Case Study of the Length Conceptions of Fifth Grade Students

Year 2019, , 807 - 836, 31.12.2019
https://doi.org/10.17522/balikesirnef.537618

Abstract

The current research, as a case study based on qualitative design, aimed
to investigate the conceptions of fifth grade students with regard to the
length concept. The participants were two Turkish students at the 5th grades
determined through criterion sampling and convenience sampling which are among
purposeful sampling strategies. The data were collected through semi-structured
interviews, and analysed via content analysis method. The concept of length was
considered within the framework of the characteristics of the measurement
concept. The findings suggest that the students had sufficient understanding in
the context of direct comparison, indirect comparison, transitivity,
appropriateness of unit and equal units. However, students had some
difficulties in recognition of different attributes of length, unit concept,
ruler and one dimensional characteristic of length concept.

References

  • Argün, Z., Arıkan, A., Bulut, S., & Halıcıoğlu, S. (2014). Temel Matematik kavramların künyesi. Ankara: Gazi.
  • Barrett, J. E., & Clements, D. H. (2003). Quantifying path length: Fourth-grade children's developing abstractions for linear measurement. Cognition and Instruction, 21(4), 475-520.
  • Bishop, A. J. (1988). Mathematics education in its cultural context. Educational studies in mathematics, 19(2), 179-191.
  • Blume, G. W., Galindo, E., & Walcott, C. (2007). Performance in measurement and geometry from the viewpoint of Principles and Standards for School Mathematics. Results and interpretations of the 2003 Mathematics Assessment of the National Assessment of Educational Progress, 95-138.
  • Boulton-Lewis, G. M., Wilss, L. A., & Mutch, S. L. (1996). An analysis of young children's strategies and use of devices for length measurement. The Journal of Mathematical Behavior, 15(3), 329-347.
  • Bragg, P., & Outhred, L. (2004). A measure of rulers-the importance of units in a measure. Paper presented at the 28th Conference of the International Group for the Psychology of Mathematics Education.
  • Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and numerical predictors of measurement performance: The moderating effects of community income and gender. Journal of Educational Psychology, 103(2), 296.
  • Clement, J. (2000). Analysis of clinical interviews: Foundations and model viability. In R. Lesh & A. E. Kelly (Eds.), Research design in mathematics and science education, (pp. 308- 327). Hillsdale, NJ: Erlbaum.
  • Clements, D. H. (1999). Teaching length measurement: Research challenges. School Science and Mathematics, 99(1), 5-11.
  • Clements, D. H., Battista, M. T., Sarama, J., Swaminathan, S., & McMillen, S. (1997). Students' development of length concepts in a Logo-based unit on geometric paths. Journal for Research in Mathematics Education, 70-95.
  • Clements, D. H., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. New York: Routledge.
  • Clements, D., & Stephan, M. (2004). Measurement in PreK-2 Mathematics. In D. Clements, J. Sarama, A. M. Di-Biase (Eds.), Engaging Young Children in Mathematics: Standards for Early Childhood Mathematics Education, (pp. 299-321). Mahwah, New Jersey: Lawrence Erlbaum.
  • Curry, M., Mitchelmore, M., & Outhred, L. (2006). Development of children’s understanding of length, area, and volume principles. Proceedings of the International Group for the Psychology of Mathematics Education, 2, 377–384.
  • Dietiker, L. C., Gonulates, F., & Smith, J. P. (2011). Understanding linear measure. Teaching Children's Mathematics, 18(4), 252-259.
  • Feza-Piyose, N. (2012). Language: A cultural capital for conceptualizing mathematics knowledge. International Electronic Journal of Mathematics Education, 7(2), 62-79.
  • Gravemeijer K., Figueiredo, N., Feijs, E., van Galen, F., Keijzer, R., & Munk, F. (2016). Measurement and geometry in upper primary school. Springer.
  • Güven, D., & Argün, Z. (2018). Width, length, and height conceptions of students with learning disabilities. Issues in Educational Research, 28(1), 77-96.
  • Herendiné-Kónya, E. (2015, February). The level of understanding geometric measurement. In CERME 9-Ninth Congress of the European Society for Research in Mathematics Education (pp. 536-542).
  • Hiebert, J. (1981). Cognitive Development and Learning Linear Measurement. Journal for Research in Mathematics Education, 12(3), 197-211.
  • Hiebert, J. (1984). Why do some children have trouble learning measurement concepts?. The Arithmetic Teacher, 31(7), 19-24.
  • Kamii, C., & Clark, F. B. (1997). Measurement of length: The need for a better approach to teaching. School Science and Mathematics, 97(3), 116-121.
  • Kamii, C. (1995, October). Why is the use of a ruler so hard? Paper presented at the 17th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, The Ohio State University, Columbus, OH.
  • Kayhan, H. C., & Argün, Z. (2014). İlköğretim öğrencilerinin uzunluk ölçme aracının çalışma biçimini bilme ve kullanma durumları arasındaki ilişki. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 31(2).
  • Lehrer, R. (2003). Developing understanding of measurement. A Research Companion to Principles and Standards for School Mathematics, 179-192.
  • Levine, S. C., Kwon, M. K. Huttenlocher, J., Ratliff, K., & Deitz, K. (2009, January). Children's understanding of ruler measurement and units of measure: A training study. Proceedings of the Annual Meeting of the Cognitive Science Society, 31(31), 1-1.
  • Machaba, F. M. (2016). The concepts of area and perimeter: Insights and misconceptions of Grade 10 learners. Pythagoras, 37(1), 304.
  • Marshall, L. (1997). Year 7 students' understanding of the relationship between area and perimeter. Retrieved from http://ro.ecu.edu.au/ theses/900Milli Eğitim Bakanlığı (2013). Ortaokul matematik (5-8. sınıf) dersi öğretim programı. Ankara: MEB.
  • National Council of Teachers of Mathematics (2006). Curriculum focal points for prekindergarten through grade 8 mathematics: A quest for coherence. Reston, VR: NCTM.
  • Nührenbörger, M. (2001, March). Children’s measurement thinking in the context of length. Paper presented at the Annual Conference on Didactics of Mathematics, Ludwigsburg, Germany.
  • Outhred, L., & McPhail, D. (2000). A framework for teaching early measurement. In Proceedings of the Mathematics Education Research Group of Australasia, 23, 487-494. Fremantle, WA: MERGA.
  • Outhred, L. N., & Mitchelmore, M. C. (2000). Young children's intuitive understanding of rectangular area measurement. Journal for research in mathematics education, 31(2), 144-167.
  • Outhred, L., Mitchelmore, M., McPhail, D., & Gould, P. (2003). Count me into measurement: A program for the early elementary school. In D. H. Clements & G. Bright (Eds.), Learning and teaching measurement: Yearbook, (pp. 81-99). Reston: National Council of Teachers of Mathematics.
  • Reinke, K. S. (1997). Area and perimeter: Preservice teachers' confusion. School Science and Mathematics, 97(2), 75-77.
  • Saraswathi, L. S. (1989). Practices in linear measurements in rural tamil-nadu: Implications for adult education programs. Journal of Education and Social Change, 3(1), 29-46.
  • Smith, J. P., Tan-Sisman, G., Dietiker, L., Figueras, H., Males, L., Lee, K., … Chang, K. (2008). Framing the analysis of written measurement curricula. In Poster presented at American Educational Research Association, 2008 annual meeting: Research on schools, neighborhoods, and communities: Toward civic responsibility, New York.
  • Smith, J. P., van den Heuvel-Panhuizen, M., & Teppo, A. R. (2011). Learning, teaching, and using measurement: introduction to the issue. ZDM, 46, 617–620.
  • Solomon, T. L., Vasilyeva, M., Huttenlocher, J., & Levine, S. C. (2015). Minding the gap: Children’s difficulty conceptualizing spatial intervals as linear measurement units. Developmental Psychology, 51(11), 1564.
  • Stake, R. (1995). The art of case study research. Thousand Oaks, CA: SAGE.
  • Steffe, L. P., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education, (pp. 267-306). Mahwah, New Jersey: Lawrence Erlbaum.
  • Stephan, M., & Clements, D. H. (2003). Linear and area measurement in prekindergarten to grade 2. Learning and Teaching Measurement, 3-
  • Szilágyi, J., Clements, D. H., & Sarama, J. (2013). Young children's understandings of length measurement: Evaluating a learning trajectory. Journal for Research in Mathematics Education, 44(3), 581-620.
  • Şişman, G. T. Ş., & Aksu, M. (2009). Seventh grade students’ success on the topics of area and perimeter. Elementary Education Online, 8(1), 243-253.
  • Tan-Sisman, G., & Aksu, M. (2012). The length measurement in the turkish mathematics curriculum: Its potential to contribute to students’learning. International Journal of Science and Mathematics Education, 10(2), 363-385.
  • Yenilmez, K., & Pargan, A. Ş. (2008). İlköğretim ikinci sinif öğrencilerinin standart uzunluk ölçme birimine ilişkin algıları. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 9(2).
  • Yin, R. K. (2013). Case study research: Design and methods. SAGE.
There are 45 citations in total.

Details

Primary Language Turkish
Journal Section Makaleler
Authors

Dilşad Güven 0000-0001-7387-5770

Ziya Argün 0000-0001-8101-7215

Publication Date December 31, 2019
Submission Date March 8, 2019
Published in Issue Year 2019

Cite

APA Güven, D., & Argün, Z. (2019). İlköğretim 5. Sınıf Öğrencilerinin Uzunluk Kavrayışları. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 807-836. https://doi.org/10.17522/balikesirnef.537618