Research Article
BibTex RIS Cite

Impact of Raster Angle and Infill Density on Dimensional Accuracy in 3D Printing: A Study on ABS Material

Year 2025, Volume: 27 Issue: 2, 303 - 311, 30.08.2025
https://doi.org/10.24011/barofd.1698257

Abstract

With the advancement of technology, the use and implementation of modern 3D printing systems have become increasingly widespread. Today, 3D printers are actively utilized in various industries including engineering, construction, manufacturing, and architecture. This study investigates the dimensional accuracy of test specimens produced using ABS filament at different raster angles and infill densities in the vertical direction. Test specimens were designed in SolidWorks, and printed using the Creality K1 Max 3D printer after G-code generation in the Creality Print 6.0 software. The same filament type was used to print samples at five different raster angles (0°, 30°, 45°, 60°, and 90°) and three infill densities (15%, 50%, and 80%). For each raster angle, five specimens were produced. Dimensional accuracy was evaluated based on length × width × thickness measurements (Mitutoyo caliper), mass (precision scale), and surface quality (Nikon T105 microscope). Estimated pre-print weights from the slicing software were also compared to the actual printed weights. The results showed that both raster angle and infill density significantly influence the dimensional accuracy of printed parts. In particular, samples printed at 90° showed the closest dimensions to the original design, while 45° samples were found to be most accurate in terms of predicted weight.

References

  • Ahn, S.-H., Montero, M., Odell, D., Roundy, S. and Wright, P.K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal 8 (4), 248-257.
  • Aniket, Y., Piyush, R., Atul, B., Ranvijay, K., Nishant, R., Jasgurpreet, S. C.; Raman, K.; Manish, G. (2023). Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf 17(6), 2867–2889. https://doi.org/10.1007/s12008-022-01026-5
  • Camposeco-Negrete, C. (2020). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach, Prog. Addit. Manuf. 5 (1), 59-65. https://doi.org/10.1007/s00170-020-05555-9
  • Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics, J. Manuf. Mater. Process 3 (3), 64. https://doi.org/10.3390/jmmp3030064
  • Huynh, H.N., Nguyen, A.T., Ha, N.L., Thai, T.T.H. (2017) Application of fuzzy Taguchi method to improve the dimensional accuracy of fused deposition modeling processed product, In: International Conference on System Science and Engineering (ICSSE) 107–112.
  • Jayanth,N., Senthil, P. and Prakash, C. (2018). Effect of chemical treatment on tensile strength and surface roughness of 3Dprinted ABS using the FDM process, Virtual Phys. Prototyp., 13 (3) 155-163. https://doi.org/10.1080/17452759.2018.1449565
  • Kristiawan, R. B., Imaduddin, F., Ariawan, D., Arfin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng., 11 (1) 639-649. https://doi.org/10.1515/eng-2021-0063
  • Mohamed, O.A., Masood, S.H., Bhowmik, J.L. (2016). Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement 81,174–196 https://doi.org/10.1016/j.measurement.2015.12.011
  • Mitchell, A., Lafont, U., Hołyńska, M., Semprimoschnig, C. (2018). Additive manufacturing – a review of 4D printing and future applications. Addit Manuf, 24,606–26. https://doi.org/10.1016/j.addma.2018.10.038
  • Mwema, F. M. and Akinlabi, E. T. (2020). Basics of fused deposition modelling (FDM), Fused Deposition Modeling, Springer International Publishing, Cham, 1-15. https://doi.org/10.1007/978-3-030-48259-6_1
  • Nuñez, P.J., Rivas, A., García-Plaza, E., Beamud, E., Sanz-Lobera, A. (2015). Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus. Procedia Engineering, 132, 856-863. https://doi.org/10.1016/j.proeng.2015.12.570
  • Padhi, S.K., Sahu, R.K., Mahapatra, S.S., Das, H.C., Sood, A.K., Patro, B., Mondal, A.K. (2017). Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy. Int J Adv Manuf Technol 5,231–242 https://doi.org/10.1007/s40436-017-0187-4
  • Peng, A., Xiao, X., Yue, R. (2014). Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73,87–100 https://doi.org/10.1007/s00170-014-5796-5
  • Pennington, R.C., N.L. Hoekstra, and J.L. (2005). Newcomer, Significant factors in the dimensional accuracy of fused deposition modelling. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 219(1): p. 89-92.
  • Penumakala, P. K., Santo, J. and Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. B. Eng., 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336
  • Rashid, A. (2019). Additive manufacturing technologies. In: Laperriere L, Reinhart G (eds) The CIRP encyclopedia of production engineering, Springer, Berlin https://doi.org/10.1007/978-3-662-53120-4
  • Tofail, S. A. M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today (Kidlington), 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Tognana, S., Montecinos, S., Gastien, R., Salgueiro, W. (2021). Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique. J. Polym. Eng., 41 (6), 490-498. https://doi.org/10.1515/polyeng-2021-0019
  • Vidakis, N., David, C., Petousis, M., Sagris, D., Mountakis, N. (2023). Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Materials Today Communications, 34, 105171. https://doi.org/10.1016/j.mtcomm.2022.105171

3B Baskı Sürecinde Tarama Açısı ve Doluluk Oranının Boyutsal Uygunluğa Etkisi: ABS Malzeme Üzerine Bir Çalışma

Year 2025, Volume: 27 Issue: 2, 303 - 311, 30.08.2025
https://doi.org/10.24011/barofd.1698257

Abstract

Teknolojinin gelişmesiyle birlikte günümüz 3 boyutlu yazıcı sistemlerinin kullanımı ve uygulanması yaygınlaşmıştır. 3 boyutlu yazıcılar mühendislik, inşaat, mimari, yapı endüstrisi gibi çeşitli sektörlerde aktif olarak kullanılmaktadır. Bu çalışmada 3 boyutlu yazıcı teknolojisinden yararlanılarak ABS tip filamentten üretilen örnek numunelerin farklı açılarda yapılan baskılarında boyutsal doğruluğu araştırılmıştır. Çalışmada aynı filament tipinden üç farklı doygunluk (%15,50,80) ve beş farklı baskı açısından (0°,30°,45°,60°,90°) yararlanılarak SolidWorkds tasarım programında tasarlanan örnekler, Creality 6.0 programıyla G kodlaması yapıldıktan sonra, Creality K1 Max 3 boyutlu yazıcı ile basılmıştır. Çalışmada her farklı açı için 5 er numune basılmış ve doğrusal doğruluğu uzunluk x genişlik x kalınlık (Mitutuya Kumpas), ağırlık (Hassas terazi) ve görsel yüzey özelliklerine (Nikon T105 mikrodskop) bakılarak değerlendirilmiştir. Değerlendirmede baskıdan önceki boyutlar, dilimleme programındaki tahmini ağırlık karşılaştırılması da yapılarak nihai sonuçlara ulaşılmıştır. Ulaşılan sonuçlara göre; baskı açısının boyutsal doğruluk üzerinde etkili olduğu, bu doğruluğa açılar haricinde baskı doygunluğu ile doğrudan etkisi olduğu belirlenmiştir.

References

  • Ahn, S.-H., Montero, M., Odell, D., Roundy, S. and Wright, P.K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal 8 (4), 248-257.
  • Aniket, Y., Piyush, R., Atul, B., Ranvijay, K., Nishant, R., Jasgurpreet, S. C.; Raman, K.; Manish, G. (2023). Fused filament fabrication: a state-of-the-art review of the technology, materials, properties and defects. Int. J. Interact. Des. Manuf 17(6), 2867–2889. https://doi.org/10.1007/s12008-022-01026-5
  • Camposeco-Negrete, C. (2020). Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach, Prog. Addit. Manuf. 5 (1), 59-65. https://doi.org/10.1007/s00170-020-05555-9
  • Dey, A. and Yodo, N. (2019). A systematic survey of FDM process parameter optimization and their influence on part characteristics, J. Manuf. Mater. Process 3 (3), 64. https://doi.org/10.3390/jmmp3030064
  • Huynh, H.N., Nguyen, A.T., Ha, N.L., Thai, T.T.H. (2017) Application of fuzzy Taguchi method to improve the dimensional accuracy of fused deposition modeling processed product, In: International Conference on System Science and Engineering (ICSSE) 107–112.
  • Jayanth,N., Senthil, P. and Prakash, C. (2018). Effect of chemical treatment on tensile strength and surface roughness of 3Dprinted ABS using the FDM process, Virtual Phys. Prototyp., 13 (3) 155-163. https://doi.org/10.1080/17452759.2018.1449565
  • Kristiawan, R. B., Imaduddin, F., Ariawan, D., Arfin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open Eng., 11 (1) 639-649. https://doi.org/10.1515/eng-2021-0063
  • Mohamed, O.A., Masood, S.H., Bhowmik, J.L. (2016). Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement 81,174–196 https://doi.org/10.1016/j.measurement.2015.12.011
  • Mitchell, A., Lafont, U., Hołyńska, M., Semprimoschnig, C. (2018). Additive manufacturing – a review of 4D printing and future applications. Addit Manuf, 24,606–26. https://doi.org/10.1016/j.addma.2018.10.038
  • Mwema, F. M. and Akinlabi, E. T. (2020). Basics of fused deposition modelling (FDM), Fused Deposition Modeling, Springer International Publishing, Cham, 1-15. https://doi.org/10.1007/978-3-030-48259-6_1
  • Nuñez, P.J., Rivas, A., García-Plaza, E., Beamud, E., Sanz-Lobera, A. (2015). Dimensional and surface texture characterization in fused deposition modelling (FDM) with ABS plus. Procedia Engineering, 132, 856-863. https://doi.org/10.1016/j.proeng.2015.12.570
  • Padhi, S.K., Sahu, R.K., Mahapatra, S.S., Das, H.C., Sood, A.K., Patro, B., Mondal, A.K. (2017). Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy. Int J Adv Manuf Technol 5,231–242 https://doi.org/10.1007/s40436-017-0187-4
  • Peng, A., Xiao, X., Yue, R. (2014). Process parameter optimization for fused deposition modeling using response surface methodology combined with fuzzy inference system. Int J Adv Manuf Technol 73,87–100 https://doi.org/10.1007/s00170-014-5796-5
  • Pennington, R.C., N.L. Hoekstra, and J.L. (2005). Newcomer, Significant factors in the dimensional accuracy of fused deposition modelling. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 219(1): p. 89-92.
  • Penumakala, P. K., Santo, J. and Thomas, A. (2020). A critical review on the fused deposition modeling of thermoplastic polymer composites. Compos. B. Eng., 201, 108336. https://doi.org/10.1016/j.compositesb.2020.108336
  • Rashid, A. (2019). Additive manufacturing technologies. In: Laperriere L, Reinhart G (eds) The CIRP encyclopedia of production engineering, Springer, Berlin https://doi.org/10.1007/978-3-662-53120-4
  • Tofail, S. A. M., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities, Mater. Today (Kidlington), 21 (1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Tognana, S., Montecinos, S., Gastien, R., Salgueiro, W. (2021). Influence of fabrication parameters on the elastic modulus and characteristic stresses in 3D printed PLA samples produced via fused deposition modelling technique. J. Polym. Eng., 41 (6), 490-498. https://doi.org/10.1515/polyeng-2021-0019
  • Vidakis, N., David, C., Petousis, M., Sagris, D., Mountakis, N. (2023). Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Materials Today Communications, 34, 105171. https://doi.org/10.1016/j.mtcomm.2022.105171
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering (Other)
Journal Section Research Articles
Authors

Sedanur Şeker 0000-0002-7268-6385

Emine Seda Erdinler 0000-0002-7814-4333

Early Pub Date August 22, 2025
Publication Date August 30, 2025
Submission Date May 13, 2025
Acceptance Date August 1, 2025
Published in Issue Year 2025 Volume: 27 Issue: 2

Cite

APA Şeker, S., & Erdinler, E. S. (2025). 3B Baskı Sürecinde Tarama Açısı ve Doluluk Oranının Boyutsal Uygunluğa Etkisi: ABS Malzeme Üzerine Bir Çalışma. Bartın Orman Fakültesi Dergisi, 27(2), 303-311. https://doi.org/10.24011/barofd.1698257


Bartin Orman Fakultesi Dergisi Editorship,

Bartin University, Faculty of Forestry, Dean Floor No:106, Agdaci District, 74100 Bartin-Turkey.

Fax: +90 (378) 223 5077, Fax: +90 (378) 223 5062,

E-mail: bofdergi@gmail.com