Araştırma Makalesi
BibTex RIS Kaynak Göster

Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method

Yıl 2021, , 490 - 514, 04.07.2021
https://doi.org/10.25092/baunfbed.893445

Öz

In this paper, we study multi-dimensional wave-like equations with variable coefficients within the frame of the fractional calculus using fractional natural decomposition method (FNDM). The considered algorithm is an elegant combination of natural transform and decomposition scheme. Five different cases are considered to illustrate and validate the competence of the projected technique in the present framework. The behaviours of the obtained results have been captured for diverse fractional order. To present the reliability and exactness of the FNDM, the numerical study has been presented. The achieved consequences illuminate that, the projected technique is very effective to analyse and easy to employ to investigate the nature of fractional nonlinear coupled system exemplifying the real-world problems.

Kaynakça

  • Liouville, J., Memoire surquelques questions de geometrieet de mecanique, etsur un nouveau genre de calcul pour resoudreces questions, J. Ecole. Polytech., 13, 1-69, (1832).
  • Riemann, G.F.B., VersuchEinerAllgemeinenAuffassung der Integration und Differentiation, GesammelteMathematischeWerke, Leipzig, (1896).
  • Caputo, M., Elasticita e Dissipazione, Zanichelli, Bologna, (1969).
  • Miller, K.S. and Ross, B., An introduction to fractional calculus and fractional differential equations, A Wiley, New York, (1993).
  • Podlubny, I., Fractional Differential Equations, Academic Press, New York, (1999).
  • Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, (2006).
  • Baleanu, D., Guvenc, Z.B. and Machado, T.J.A., New trends in nanotechnology and fractional calculus applications, Springer Dordrecht Heidelberg, London New York, (2010).
  • Esen, A.,Sulaiman, T.A.,Bulut, H. and Baskonus, H.M., Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik,167, 150-156, (2018).
  • Prakasha, D. G. and Veeresha, P., Analysis of Lakes pollution model with Mittag-Leffler kernel, J. Ocean Eng. Sci., 1-13, (2020), DOI: 10.1016/j.joes.2020.01.004.
  • Baleanu, D., Wu, G.C. and Zeng, S.D., Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals, 102, 99-105, (2017).
  • Veeresha, P., Prakasha, D.G. and Baskonus, H.M., New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29, (013119), (2019), DOI: 10.1063/1.5074099.
  • Baskonus, H.M., Sulaiman, T.A. and Bulut, H., On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93, (3), 393-399, (2019).
  • Veeresha, P. and Prakasha, D.G., Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng., 5, 1-12, (2020), DOI: 10.1016/j.rineng.2019.100085.
  • Prakasha, D.G., Malagi, N.S. and Veeresha, P., New approach for fractional Schrödinger–Boussinesq equations with Mittag-Leffler kernel, Math. Meth. Appl. Sci.,(2020), DOI: 10.1002/mma.6635.
  • Gao, W., Baskonus, H.M. and Shi, L., New investigation of Bats-Hosts-Reservoir-People coronavirus model and apply to 2019-nCoV system, Adv. Differ. Equ., 391, (2020), DOI: 10.1186/s13662-020-02831-6
  • Cattani, C. and Pierro, G., On the fractal geometry of DNA by the binary image analysis, Bull. Math. Biol., 75, (9), 1544-1570, (2013).
  • Gao, W., Veeresha, P., Prakasha, D. G. and Baskonus, H.M., Novel dynamical structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biology, 9, (5), (2020), DOI: 10.3390/biology9050107.
  • Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D.G. and Kumar, P., A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos Solitons Fractals, 138, (2020), DOI: 10.1016/j.chaos.2020.109929.
  • Cattani, C., Haar wavelet-based technique for sharp jumps classification, Math. Comput. Model., 39, (2-3), 255-278, (2004).
  • Gao, W., Yel, G., Baskonus, H.M. and Cattani, C., Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, AIMS Math., 5, (1), 507–521, (2020).
  • Al-Ghafri, K. S. and Rezazadeh, H., Solitons and other solutions of (3+1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Appl. Math. Nonlinear Sci., 4, (2), 289-304, (2019).
  • Atangana, A., Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102, 396-406, (2017).
  • Veeresha, P. and Prakasha, D. G., Novel approach for modified forms of Camassa–Holm and Degasperis–Procesiequations using fractional operator, Commun. Theor. Phys. 72, 105002, (2020).
  • Dananea, J., Allalia, K. and Hammouch, Z., Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos Solitons Fractals, 136, 109787, (2020).
  • Kiran, M.S., et al., A mathematical analysis of ongoing outbreak COVID‐19 in India through nonsingular derivative, Numer. Methods Partial Differ. Equ., (2020), DOI: 10.1002/num.22579.
  • Ali, K.K., Osman, M.S., Baskonus, H.M., Elazab, N.S. and Ilhan, E., Analytical and numerical study of the HIV-1 infection of CD4+T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy, Math. Meth. Appl. Sci., (2020), DOI:10.1002/mma.7022, 2021.
  • Gao, W., Veeresha, P., Prakasha, D.G. and Baskonus, H.M., New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques, Numer Methods Partial Differ Equ., 37, (1), 210-243, (2021).
  • Veeresha, P., Prakasha, D.G., Kumar, D., Fractional SIR epidemic model of childhood disease with Mittag-Leffler memory, Fractional Calculus in Medical and Health Science, 229-248, (2020).
  • Jothimani, K., Valliammal, N. and Ravichandran, C., Existence result for a neutral fractional integro-differential equation with state dependent delay, J. Appl. Nonlinear Dyn., 7, (4), 371-381, (2018).
  • Ravichandran, C., Jothimani, K., Baskonus, H.M. and Valliammal, N., New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus, 133, (2018), DOI: 10.1140/epjp/i2018-11966-3.
  • Veeresha, P., Prakasha, D.G. and Baskonus, H.M., An efficient technique for coupled fractional Whitham-Broer-Kaup equations describing the propagation of shallow water waves, Advances in Intelligent Systems and Computing, 49-75, (2020).
  • Subashini, R., Jothimani, K., Nisar, K.S. and Ravichandran, C., New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alexandria Eng. J., 59, (5), 2891-2899, (2020).
  • Ismael, H.F., Bulut, H. and Baskonus, H.M., Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m+(G'/G))-expansion method, Pramana - J Phys., 94, 35, (2020), DOI: 10.1007/s12043-019-1897-x.
  • Veeresha, P., Prakasha, D.G., Singh, J., A novel approach for nonlinear equations occurs in ion acoustic waves in plasma with Mittag-Leffler law, Eng. Comput., 37, (6), 1865-1897, (2019).
  • Ravichandran, C., Logeswari, K., Panda S.K., Nisar, N.S., On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos Solitons Fractals, 139, (2020), DOI: 10.1016/j.chaos.2020.110012.
  • Silambarasan, R, et al., Longitudinal strain waves propagating in an infinitely long cylindrical rod composed of generally incompressible materials and it’s Jacobi elliptic function solutions, Math. Comput. Simul., 182, 566-602, (2021).
  • Merlani, A. L., Natale, G. and Salusti, E., On the theory of pressure and temperature nonlinear waves in compressible fluid-saturated porous rocks, Geophys. Fluid Dyn., 85, 97-128, (1997).
  • Akhmetov, A.A., Long current loops as regular solutions of the equation for coupling currents in a flat two-layer superconducting cable, Cryogenics, 43, 317-322, (2003).
  • Manolis, G.D. and Rangelov, T.V., Non-homogeneous elastic waves in solid: notes on the vector decomposition technique, Soil Dynam. Earthquake Engrg., 26, 952-959, (2016).
  • Holliday, J.R., Rundle,J. B., Tiampo, K.F., Klein, W. and Donnellan, A., Modification of the pattern informatics method for forecasting large earthquake events using complex eigenfactors, Tectonophysics, 413, 87-91, (2006).
  • Momani, S., Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method, Appl. Math. Comput., 165, 459-472, (2005).
  • Singh, J. and Kumar, D., An application of homotopy perturbation transform method to fractional heat and wave-like equations, J. Fract. Calc. Appl., 4, (2), 290-302, (2013).
  • Ozis, T. and Agirseven, D., He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients, Phys. Letters A, 372, 5944-5950, (2008).
  • Wazwaz, A.M. and Gorguis, A., Exact solutions for heat-like and wave-like equations with variable coefficients, Appl. Math. Comput., 149, 15-29, (2004).
  • Adomian, G., A new approach to nonlinear partial differential equations, J. Math. Anal. Appl., 102 (1984), 420-434.
  • Khan, Z. H. and Khan, W. A., N-Transform-properties and applications, NUST J. Engg. Sci., 1, (1), 127-133, (2008).
  • Rawashdeh, M.S., The fractional natural decomposition method: theories and applications, Math. Meth. Appl. Sci., 40, 2362-2376, (2017).
  • Rawashdeh, M.S. and Maitama, S., Finding exact solutions of nonlinear PDEs using the natural decomposition method, Math. Meth. Appl. Sci., 40, 223-236, (2017).
  • Prakasha, D.G., Veeresha, P. and Rawashdeh, M.S., Numerical solution for (2+1)‐dimensional time‐fractional coupled Burger equations using fractional natural decomposition method, Math. Meth. Appl. Sci., 42, (10), 3409-3427, (2019).
  • Veeresha, P., Prakasha, D.G. and Singh, J., Solution for fractional forced KdV equation using fractional natural decomposition method, AIMS Math., 5, (2), 798-810, (2019).
  • Rawashdeh, M.S., Solving fractional ordinary differential equations using FNDM, Thai J. Math., 17, (1), 239–251, (2019).
  • Prakasha, D.G., Veeresha, P. and Baskonus, H.M., Two novel computational techniques for fractional Gardner and Cahn‐Hilliard equations, Comp. Math. Meth., 1, (2), 1-19, (2019), DOI: 10.1002/cmm4.1021.
  • Veeresha, P. and Prakasha, D.G. An efficient technique for two-dimensional fractional order biological population model, Int. J. Model. Simul. Sci. Comput., (2050005), 1-17, (2020), DOI: 10.1142/S1793962320500051.
  • Mittag-Leffler, G. M., Sur la nouvelle fonction E_α (x), C. R. Acad. Sci. Paris, 137, 554-558, (1903).
  • Loonker, D. and Banerji, P. K., Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 12, (2), 1-7, (2013).

Değişken katsayılı çok boyutlu dalga benzeri denklemler için kesirli yaklaşım üzerine etkili bir metot

Yıl 2021, , 490 - 514, 04.07.2021
https://doi.org/10.25092/baunfbed.893445

Öz

Bu çalışmanın temel amacı, fraksiyonel doğal ayrıştırma yöntemini (FNDM) kullanarak kesirli operatör çerçevesinde değişken katsayılı çok boyutlu dalga benzeri denklemleri incelemektir. Değerlendirilen algoritma, doğal dönüşüm ve ayrıştırma şemasının güzel bir kombinasyonudur. Mevcut çerçevede öngörülen tekniğin yeterliliğini göstermek ve doğrulamak için beş farklı durum ele alınmıştır. Elde edilen sonuçların davranışları, çeşitli kesirli sıralar için değerlendirilmiştir. FNDM'nin güvenilirliğini ve kesinliğini göstermek için sayısal çalışma sunulmuştur. Elde edilen sonuçlar, öngörülen tekniğin analiz edilmesinin çok etkili olduğunu ve gerçek dünya problemlerini örnekleyen kesirli doğrusal olmayan bağlı sistemin doğasını araştırmak için kullanılmasının kolay olduğunu göstermektedir.

Kaynakça

  • Liouville, J., Memoire surquelques questions de geometrieet de mecanique, etsur un nouveau genre de calcul pour resoudreces questions, J. Ecole. Polytech., 13, 1-69, (1832).
  • Riemann, G.F.B., VersuchEinerAllgemeinenAuffassung der Integration und Differentiation, GesammelteMathematischeWerke, Leipzig, (1896).
  • Caputo, M., Elasticita e Dissipazione, Zanichelli, Bologna, (1969).
  • Miller, K.S. and Ross, B., An introduction to fractional calculus and fractional differential equations, A Wiley, New York, (1993).
  • Podlubny, I., Fractional Differential Equations, Academic Press, New York, (1999).
  • Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, (2006).
  • Baleanu, D., Guvenc, Z.B. and Machado, T.J.A., New trends in nanotechnology and fractional calculus applications, Springer Dordrecht Heidelberg, London New York, (2010).
  • Esen, A.,Sulaiman, T.A.,Bulut, H. and Baskonus, H.M., Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik,167, 150-156, (2018).
  • Prakasha, D. G. and Veeresha, P., Analysis of Lakes pollution model with Mittag-Leffler kernel, J. Ocean Eng. Sci., 1-13, (2020), DOI: 10.1016/j.joes.2020.01.004.
  • Baleanu, D., Wu, G.C. and Zeng, S.D., Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals, 102, 99-105, (2017).
  • Veeresha, P., Prakasha, D.G. and Baskonus, H.M., New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos, 29, (013119), (2019), DOI: 10.1063/1.5074099.
  • Baskonus, H.M., Sulaiman, T.A. and Bulut, H., On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93, (3), 393-399, (2019).
  • Veeresha, P. and Prakasha, D.G., Solution for fractional generalized Zakharov equations with Mittag-Leffler function, Results Eng., 5, 1-12, (2020), DOI: 10.1016/j.rineng.2019.100085.
  • Prakasha, D.G., Malagi, N.S. and Veeresha, P., New approach for fractional Schrödinger–Boussinesq equations with Mittag-Leffler kernel, Math. Meth. Appl. Sci.,(2020), DOI: 10.1002/mma.6635.
  • Gao, W., Baskonus, H.M. and Shi, L., New investigation of Bats-Hosts-Reservoir-People coronavirus model and apply to 2019-nCoV system, Adv. Differ. Equ., 391, (2020), DOI: 10.1186/s13662-020-02831-6
  • Cattani, C. and Pierro, G., On the fractal geometry of DNA by the binary image analysis, Bull. Math. Biol., 75, (9), 1544-1570, (2013).
  • Gao, W., Veeresha, P., Prakasha, D. G. and Baskonus, H.M., Novel dynamical structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biology, 9, (5), (2020), DOI: 10.3390/biology9050107.
  • Gao, W., Veeresha, P., Baskonus, H.M., Prakasha, D.G. and Kumar, P., A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos Solitons Fractals, 138, (2020), DOI: 10.1016/j.chaos.2020.109929.
  • Cattani, C., Haar wavelet-based technique for sharp jumps classification, Math. Comput. Model., 39, (2-3), 255-278, (2004).
  • Gao, W., Yel, G., Baskonus, H.M. and Cattani, C., Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, AIMS Math., 5, (1), 507–521, (2020).
  • Al-Ghafri, K. S. and Rezazadeh, H., Solitons and other solutions of (3+1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Appl. Math. Nonlinear Sci., 4, (2), 289-304, (2019).
  • Atangana, A., Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102, 396-406, (2017).
  • Veeresha, P. and Prakasha, D. G., Novel approach for modified forms of Camassa–Holm and Degasperis–Procesiequations using fractional operator, Commun. Theor. Phys. 72, 105002, (2020).
  • Dananea, J., Allalia, K. and Hammouch, Z., Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos Solitons Fractals, 136, 109787, (2020).
  • Kiran, M.S., et al., A mathematical analysis of ongoing outbreak COVID‐19 in India through nonsingular derivative, Numer. Methods Partial Differ. Equ., (2020), DOI: 10.1002/num.22579.
  • Ali, K.K., Osman, M.S., Baskonus, H.M., Elazab, N.S. and Ilhan, E., Analytical and numerical study of the HIV-1 infection of CD4+T-cells conformable fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy, Math. Meth. Appl. Sci., (2020), DOI:10.1002/mma.7022, 2021.
  • Gao, W., Veeresha, P., Prakasha, D.G. and Baskonus, H.M., New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques, Numer Methods Partial Differ Equ., 37, (1), 210-243, (2021).
  • Veeresha, P., Prakasha, D.G., Kumar, D., Fractional SIR epidemic model of childhood disease with Mittag-Leffler memory, Fractional Calculus in Medical and Health Science, 229-248, (2020).
  • Jothimani, K., Valliammal, N. and Ravichandran, C., Existence result for a neutral fractional integro-differential equation with state dependent delay, J. Appl. Nonlinear Dyn., 7, (4), 371-381, (2018).
  • Ravichandran, C., Jothimani, K., Baskonus, H.M. and Valliammal, N., New results on nondensely characterized integrodifferential equations with fractional order, Eur. Phys. J. Plus, 133, (2018), DOI: 10.1140/epjp/i2018-11966-3.
  • Veeresha, P., Prakasha, D.G. and Baskonus, H.M., An efficient technique for coupled fractional Whitham-Broer-Kaup equations describing the propagation of shallow water waves, Advances in Intelligent Systems and Computing, 49-75, (2020).
  • Subashini, R., Jothimani, K., Nisar, K.S. and Ravichandran, C., New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alexandria Eng. J., 59, (5), 2891-2899, (2020).
  • Ismael, H.F., Bulut, H. and Baskonus, H.M., Optical soliton solutions to the Fokas–Lenells equation via sine-Gordon expansion method and (m+(G'/G))-expansion method, Pramana - J Phys., 94, 35, (2020), DOI: 10.1007/s12043-019-1897-x.
  • Veeresha, P., Prakasha, D.G., Singh, J., A novel approach for nonlinear equations occurs in ion acoustic waves in plasma with Mittag-Leffler law, Eng. Comput., 37, (6), 1865-1897, (2019).
  • Ravichandran, C., Logeswari, K., Panda S.K., Nisar, N.S., On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos Solitons Fractals, 139, (2020), DOI: 10.1016/j.chaos.2020.110012.
  • Silambarasan, R, et al., Longitudinal strain waves propagating in an infinitely long cylindrical rod composed of generally incompressible materials and it’s Jacobi elliptic function solutions, Math. Comput. Simul., 182, 566-602, (2021).
  • Merlani, A. L., Natale, G. and Salusti, E., On the theory of pressure and temperature nonlinear waves in compressible fluid-saturated porous rocks, Geophys. Fluid Dyn., 85, 97-128, (1997).
  • Akhmetov, A.A., Long current loops as regular solutions of the equation for coupling currents in a flat two-layer superconducting cable, Cryogenics, 43, 317-322, (2003).
  • Manolis, G.D. and Rangelov, T.V., Non-homogeneous elastic waves in solid: notes on the vector decomposition technique, Soil Dynam. Earthquake Engrg., 26, 952-959, (2016).
  • Holliday, J.R., Rundle,J. B., Tiampo, K.F., Klein, W. and Donnellan, A., Modification of the pattern informatics method for forecasting large earthquake events using complex eigenfactors, Tectonophysics, 413, 87-91, (2006).
  • Momani, S., Analytical approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method, Appl. Math. Comput., 165, 459-472, (2005).
  • Singh, J. and Kumar, D., An application of homotopy perturbation transform method to fractional heat and wave-like equations, J. Fract. Calc. Appl., 4, (2), 290-302, (2013).
  • Ozis, T. and Agirseven, D., He’s homotopy perturbation method for solving heat-like and wave-like equations with variable coefficients, Phys. Letters A, 372, 5944-5950, (2008).
  • Wazwaz, A.M. and Gorguis, A., Exact solutions for heat-like and wave-like equations with variable coefficients, Appl. Math. Comput., 149, 15-29, (2004).
  • Adomian, G., A new approach to nonlinear partial differential equations, J. Math. Anal. Appl., 102 (1984), 420-434.
  • Khan, Z. H. and Khan, W. A., N-Transform-properties and applications, NUST J. Engg. Sci., 1, (1), 127-133, (2008).
  • Rawashdeh, M.S., The fractional natural decomposition method: theories and applications, Math. Meth. Appl. Sci., 40, 2362-2376, (2017).
  • Rawashdeh, M.S. and Maitama, S., Finding exact solutions of nonlinear PDEs using the natural decomposition method, Math. Meth. Appl. Sci., 40, 223-236, (2017).
  • Prakasha, D.G., Veeresha, P. and Rawashdeh, M.S., Numerical solution for (2+1)‐dimensional time‐fractional coupled Burger equations using fractional natural decomposition method, Math. Meth. Appl. Sci., 42, (10), 3409-3427, (2019).
  • Veeresha, P., Prakasha, D.G. and Singh, J., Solution for fractional forced KdV equation using fractional natural decomposition method, AIMS Math., 5, (2), 798-810, (2019).
  • Rawashdeh, M.S., Solving fractional ordinary differential equations using FNDM, Thai J. Math., 17, (1), 239–251, (2019).
  • Prakasha, D.G., Veeresha, P. and Baskonus, H.M., Two novel computational techniques for fractional Gardner and Cahn‐Hilliard equations, Comp. Math. Meth., 1, (2), 1-19, (2019), DOI: 10.1002/cmm4.1021.
  • Veeresha, P. and Prakasha, D.G. An efficient technique for two-dimensional fractional order biological population model, Int. J. Model. Simul. Sci. Comput., (2050005), 1-17, (2020), DOI: 10.1142/S1793962320500051.
  • Mittag-Leffler, G. M., Sur la nouvelle fonction E_α (x), C. R. Acad. Sci. Paris, 137, 554-558, (1903).
  • Loonker, D. and Banerji, P. K., Solution of fractional ordinary differential equations by natural transform, Int. J. Math. Eng. Sci., 12, (2), 1-7, (2013).
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Fatma Berna Benlı Bu kişi benim 0000-0003-3421-371X

Yayımlanma Tarihi 4 Temmuz 2021
Gönderilme Tarihi 17 Eylül 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Benlı, F. B. (2021). Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 490-514. https://doi.org/10.25092/baunfbed.893445
AMA Benlı FB. Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method. BAUN Fen. Bil. Enst. Dergisi. Temmuz 2021;23(2):490-514. doi:10.25092/baunfbed.893445
Chicago Benlı, Fatma Berna. “Fractional Approach for Multi-Dimensional Wave-Like Equations With Variable Coefficient Using an Efficient Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 2 (Temmuz 2021): 490-514. https://doi.org/10.25092/baunfbed.893445.
EndNote Benlı FB (01 Temmuz 2021) Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 2 490–514.
IEEE F. B. Benlı, “Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method”, BAUN Fen. Bil. Enst. Dergisi, c. 23, sy. 2, ss. 490–514, 2021, doi: 10.25092/baunfbed.893445.
ISNAD Benlı, Fatma Berna. “Fractional Approach for Multi-Dimensional Wave-Like Equations With Variable Coefficient Using an Efficient Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/2 (Temmuz 2021), 490-514. https://doi.org/10.25092/baunfbed.893445.
JAMA Benlı FB. Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method. BAUN Fen. Bil. Enst. Dergisi. 2021;23:490–514.
MLA Benlı, Fatma Berna. “Fractional Approach for Multi-Dimensional Wave-Like Equations With Variable Coefficient Using an Efficient Method”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 2, 2021, ss. 490-14, doi:10.25092/baunfbed.893445.
Vancouver Benlı FB. Fractional approach for multi-dimensional wave-like equations with variable coefficient using an efficient method. BAUN Fen. Bil. Enst. Dergisi. 2021;23(2):490-514.