Research Article
BibTex RIS Cite

S-metrik uzaylar üzerinde sabit-nokta teoremlerinin çeşitli türleri

Year 2018, Volume: 20 Issue: 2, 211 - 223, 01.12.2018
https://doi.org/10.25092/baunfbed.426665

Abstract

Son zamanlarda yeni sabit nokta teoremleri elde etmek için bazı genelleştirilmiş metrik uzaylar çalışılmaktadır. Örneğin, S-metrik uzay kavramı bu amaç için tanıtılmıştır. Bu çalışmada, S-metrik uzaylar üzerinde farklı daralma koşulları kullanılarak bazı sabit nokta sonuçları ispatlanmıştır. İspatlanan teoremlerde Hardy-Rogers tipinde daralma, Khan tipinde daralma, Meir-Keeler-Khan tipinde daralma gibi çeşitli teknikler kullanılmıştır. Bu sabit nokta sonuçları S-metrik uzaylar üzerindeki bazı bilinen sabit nokta sonuçlarını genellemektedir. Ayrıca, herhangi bir metrik tarafından üretilemeyen S-metrik örnekleri kullanılarak elde edilen teorik sonuçları gerçekleyecek bazı örnekler verilmiştir. S-metrik uzaylar üzerinde bir uygulama olarak değiştirilmiş C-Khan tipinde daralma kavramı kullanılarak yeni bir sabit çember sonucu verilmiştir.

References

  • Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 2, 133-181, (1922).
  • Hardy, G.E. and Rogers, T.D., A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16, 201-206, (1973).
  • Kumari, P.S. and Panthi, D., Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings, Fixed Point Theory Appl., 1, 15, (2016).
  • Fisher, B., On a theorem of Khan, Riv. Math. Univ. Parma., 4, 135-137, (1978).
  • Meir, A. and Keeler, E., A theorem on contraction mapping, J. Math. Anal. Appl., 28, 326-329, (1969).
  • Kumar, M. and Aracı, S., -Meir-Keeler-Khan type fixed point theorem in partial metric spaces, Bol. Soc. Paran. Mat., 36(4), 149-157, (2018).
  • Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(3), 258-266, (2012).
  • Hieu, N.T., Ly, N.T. and Dung, N.V., A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math., 13(2), 369-380, (2015).
  • Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci., 11(1), 7-16, (2017).
  • Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(1), 113-124, (2014).
  • Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(1), 39-52, (2017).
  • Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • Mlaiki, N., - -contractive mapping on S-metric space, Math. Sci. Lett., 4(1), 9-12, (2015).
  • Özgür, N.Y. and Taş, N., Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., (2017). https://doi.org/10.1007/s40840-017-0555-z
  • Özgür, N.Y. and Taş, N., Some fixed-circle theorems on S-metric spaces with a geometric viewpoint, arXiv:1704.08838 [math.MG].
  • Özgür, N.Y., Taş, N. and Çelik, U., New fixed-circle results on S-metric spaces, Bull. Math. Anal. Appl., 9(2), 10-23, (2017).
  • Mlaiki, N., Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4(4), 509-524, (2014).
  • Sedghi, S., Gholidahneh, A., Dosenovic, T., Esfahani, J. and Radenovic, S., Common fixed point of four maps in Sb -metric spaces, J. Linear Topol. Algebra, 5(2), 93-104, (2016).
  • Souayah, N., A fixed point in partial Sb-metric spaces, An. Ştiinţ. Univ. "Ovidius'' Constanţa Ser. Mat., 24(3), 351-362, (2016).

Various types of fixed-point theorems on S-metric spaces

Year 2018, Volume: 20 Issue: 2, 211 - 223, 01.12.2018
https://doi.org/10.25092/baunfbed.426665

Abstract

Recently, some generalized metric spaces have been studied to obtain new fixed-point theorems. For example, the notion of S-metric space was introduced for this purpose. In this study, some fixed-point results are proved using different contractive conditions on S-metric spaces. Various techniques such as Hard-Rogers type contraction, Khan type contraction, Meir-Keeler-Khan type contraction are used in our theorems to be proved. These fixed-point results extend some known fixed-point theorems on S-metric spaces. Also, to illustrate obtained theoretical results, some examples are given using an S-metric which is not generated by any metric. As an application, a new fixed-circle result is presented using modified C-Khan type contraction on S-metric spaces. 

References

  • Banach, S., Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 2, 133-181, (1922).
  • Hardy, G.E. and Rogers, T.D., A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16, 201-206, (1973).
  • Kumari, P.S. and Panthi, D., Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings, Fixed Point Theory Appl., 1, 15, (2016).
  • Fisher, B., On a theorem of Khan, Riv. Math. Univ. Parma., 4, 135-137, (1978).
  • Meir, A. and Keeler, E., A theorem on contraction mapping, J. Math. Anal. Appl., 28, 326-329, (1969).
  • Kumar, M. and Aracı, S., -Meir-Keeler-Khan type fixed point theorem in partial metric spaces, Bol. Soc. Paran. Mat., 36(4), 149-157, (2018).
  • Sedghi, S., Shobe, N. and Aliouche, A., A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64(3), 258-266, (2012).
  • Hieu, N.T., Ly, N.T. and Dung, N.V., A generalization of Ciric quasi-contractions for maps on S-metric spaces, Thai J. Math., 13(2), 369-380, (2015).
  • Özgür, N.Y. and Taş, N., Some new contractive mappings on S-metric spaces and their relationships with the mapping (S25), Math. Sci., 11(1), 7-16, (2017).
  • Sedghi, S. and Dung, N.V., Fixed point theorems on S-metric spaces, Mat. Vesnik, 66(1), 113-124, (2014).
  • Özgür, N.Y. and Taş, N., Some fixed point theorems on S-metric spaces, Mat. Vesnik, 69(1), 39-52, (2017).
  • Özgür, N.Y. and Taş, N., Some generalizations of fixed point theorems on S-metric spaces, Essays in Mathematics and Its Applications in Honor of Vladimir Arnold, New York, Springer, 2016.
  • Mlaiki, N., - -contractive mapping on S-metric space, Math. Sci. Lett., 4(1), 9-12, (2015).
  • Özgür, N.Y. and Taş, N., Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc., (2017). https://doi.org/10.1007/s40840-017-0555-z
  • Özgür, N.Y. and Taş, N., Some fixed-circle theorems on S-metric spaces with a geometric viewpoint, arXiv:1704.08838 [math.MG].
  • Özgür, N.Y., Taş, N. and Çelik, U., New fixed-circle results on S-metric spaces, Bull. Math. Anal. Appl., 9(2), 10-23, (2017).
  • Mlaiki, N., Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4(4), 509-524, (2014).
  • Sedghi, S., Gholidahneh, A., Dosenovic, T., Esfahani, J. and Radenovic, S., Common fixed point of four maps in Sb -metric spaces, J. Linear Topol. Algebra, 5(2), 93-104, (2016).
  • Souayah, N., A fixed point in partial Sb-metric spaces, An. Ştiinţ. Univ. "Ovidius'' Constanţa Ser. Mat., 24(3), 351-362, (2016).
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Nihal Taş This is me

Publication Date December 1, 2018
Submission Date February 16, 2018
Published in Issue Year 2018 Volume: 20 Issue: 2

Cite

APA Taş, N. (2018). Various types of fixed-point theorems on S-metric spaces. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 211-223. https://doi.org/10.25092/baunfbed.426665
AMA Taş N. Various types of fixed-point theorems on S-metric spaces. BAUN Fen. Bil. Enst. Dergisi. December 2018;20(2):211-223. doi:10.25092/baunfbed.426665
Chicago Taş, Nihal. “Various Types of Fixed-Point Theorems on S-Metric Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 2 (December 2018): 211-23. https://doi.org/10.25092/baunfbed.426665.
EndNote Taş N (December 1, 2018) Various types of fixed-point theorems on S-metric spaces. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2 211–223.
IEEE N. Taş, “Various types of fixed-point theorems on S-metric spaces”, BAUN Fen. Bil. Enst. Dergisi, vol. 20, no. 2, pp. 211–223, 2018, doi: 10.25092/baunfbed.426665.
ISNAD Taş, Nihal. “Various Types of Fixed-Point Theorems on S-Metric Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (December 2018), 211-223. https://doi.org/10.25092/baunfbed.426665.
JAMA Taş N. Various types of fixed-point theorems on S-metric spaces. BAUN Fen. Bil. Enst. Dergisi. 2018;20:211–223.
MLA Taş, Nihal. “Various Types of Fixed-Point Theorems on S-Metric Spaces”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 2, 2018, pp. 211-23, doi:10.25092/baunfbed.426665.
Vancouver Taş N. Various types of fixed-point theorems on S-metric spaces. BAUN Fen. Bil. Enst. Dergisi. 2018;20(2):211-23.