Araştırma Makalesi
BibTex RIS Kaynak Göster

Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute

Yıl 2020, Cilt: 22 Sayı: 1, 255 - 268, 10.01.2020
https://doi.org/10.25092/baunfbed.680775

Öz

In this work, first, Theorem 2 in [1] [Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math. Informatics, 27 (5-6), 1493-1499, 2009] and Theorem 2.2 in [2][Özdemir H., Sarduvan M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009] are reconsidered in different ways under the condition that the matrices involved in the linear combination are commutative. Thus, it is seen that there are some missing results in Theorem 2 in [1]. Then, by considering the obtained results and doing some detailed investigations, it is given a new characterization, without any restriction on the involved matrices except for commutativity, of a linear combination of an idempotent and a tripotent matrix that commute.

Kaynakça

  • Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, Journal of Applied Mathematics and Informatics, 27, 1493-1499, (2009). Özdemir, H., Sarduvan, M., Özban, A.Y., and Güler, N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Applied Mathematics and Computation, 207 1, 197-201, (2009).
  • Baksalary, J.K. and Baksalary, O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra and its Applications, 321, 1, 3-7, (2000).
  • Baksalary, J.K., Baksalary, O.M., and Styan, G.P.H., Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra and its Applications, 354, 21-34, (2002).
  • Özdemir, H. and Özban, A.Y., On idempotency of linear combinations of idempotent matrices, Applied Mathematics and Computation, 159, 439-448, (2004).
  • Baksalary, J.K., Baksalary, O.M., and Özdemir, H., A note on linear combinations of commuting tripotent matrices, Linear Algebra and its Applications, 388, 45-51, (2004).
  • Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute, Linear Algebra and its Applications, 403, 414-418, (2005).
  • Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that do not commute, Linear and Multilinear Algebra, 56, 6, 679-687, (2008).
  • Sarduvan, M. and Özdemir, H., On linear combinations of two tripotent, idempotent and involutive matrices, Applied Mathematics and Computation, 200, 401-406, (2008).
  • Uç, M., Özdemir, H., and Özban, A.Y., On the quadraticity of linear combinations of quadratic matrices, Linear and Multilinear Algebra, 63, 6, 1125-1137, (2015).
  • Uç, M., Petik, T., and Özdemir, H., The generalized quadraticity of linear combinations of two commuting quadratic matrices, Linear and Multilinear Algebra, 64, 9, 1696-1715, (2016).
  • Baksalary, O.M., Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra and its Applications, 388, 67-78, (2004).
  • Baksalary O.M and Benítez, J., Idempotency of linear combinations of three idempotent matrices, two of which are commuting, Linear Algebra and its Applications, 424, 320-337, (2007).
  • Petik, T., Uç, M., Özdemir, H., Generalized quadraticity of linear combination of two generalized quadratic matrices, Linear and Multilinear Algebra, 63, 2430-2439, (2015).

Değişmeli bir idempotent ve bir tripotent matrisin bazı lineer kombinasyonlarının alternatif karakterizasyonları

Yıl 2020, Cilt: 22 Sayı: 1, 255 - 268, 10.01.2020
https://doi.org/10.25092/baunfbed.680775

Öz

Bu çalışmada ilk olarak [1][Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, J. Appl. Math. Informatics, 27 (5-6), 1493-1499, 2009]’deki Teorem 2 ve [2]([Özdemir H., Sarduvan M., Özban A.Y., Güler N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Appl. Math. Comput., 207 (1), 197-201, 2009]’deki Teorem 2.2, lineer kombinasyonda içerilen matrislerin değişmeli olması koşulu altında farklı tarzlarda yeniden ele alınmaktadır. Böylece, [1]’deki Teorem 2’de bazı eksik sonuçların mevcut olduğu görülmüştür. Daha sonra elde edilen sonuçları göz önüne alarak ve bazı detaylı incelemeler yaparak, değişmeli bir idempotent ve bir tripotent matrisin bir lineer kombinasyonunun, içerilen matrisler üzerinde değişmelilik dışında herhangi bir kısıtlama olmaksızın, yeni bir karakterizasyonu verilmektedir.

Kaynakça

  • Yao, H., Sun, Y., Xu, C., and Bu, C., A note on linear combinations of an idempotent matrix and a tripotent matrix, Journal of Applied Mathematics and Informatics, 27, 1493-1499, (2009). Özdemir, H., Sarduvan, M., Özban, A.Y., and Güler, N., On idempotency and tripotency of linear combinations of two commuting tripotent matrices, Applied Mathematics and Computation, 207 1, 197-201, (2009).
  • Baksalary, J.K. and Baksalary, O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra and its Applications, 321, 1, 3-7, (2000).
  • Baksalary, J.K., Baksalary, O.M., and Styan, G.P.H., Idempotency of linear combinations of an idempotent matrix and a tripotent matrix, Linear Algebra and its Applications, 354, 21-34, (2002).
  • Özdemir, H. and Özban, A.Y., On idempotency of linear combinations of idempotent matrices, Applied Mathematics and Computation, 159, 439-448, (2004).
  • Baksalary, J.K., Baksalary, O.M., and Özdemir, H., A note on linear combinations of commuting tripotent matrices, Linear Algebra and its Applications, 388, 45-51, (2004).
  • Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that commute, Linear Algebra and its Applications, 403, 414-418, (2005).
  • Benítez, J. and Thome, N., Idempotency of linear combinations of an idempotent matrix and a t-potent matrix that do not commute, Linear and Multilinear Algebra, 56, 6, 679-687, (2008).
  • Sarduvan, M. and Özdemir, H., On linear combinations of two tripotent, idempotent and involutive matrices, Applied Mathematics and Computation, 200, 401-406, (2008).
  • Uç, M., Özdemir, H., and Özban, A.Y., On the quadraticity of linear combinations of quadratic matrices, Linear and Multilinear Algebra, 63, 6, 1125-1137, (2015).
  • Uç, M., Petik, T., and Özdemir, H., The generalized quadraticity of linear combinations of two commuting quadratic matrices, Linear and Multilinear Algebra, 64, 9, 1696-1715, (2016).
  • Baksalary, O.M., Idempotency of linear combinations of three idempotent matrices, two of which are disjoint, Linear Algebra and its Applications, 388, 67-78, (2004).
  • Baksalary O.M and Benítez, J., Idempotency of linear combinations of three idempotent matrices, two of which are commuting, Linear Algebra and its Applications, 424, 320-337, (2007).
  • Petik, T., Uç, M., Özdemir, H., Generalized quadraticity of linear combination of two generalized quadratic matrices, Linear and Multilinear Algebra, 63, 2430-2439, (2015).
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Tuğba Petik 0000-0003-4635-2776

Burak Tufan Gökmen Bu kişi benim 0000-0003-0506-2449

Yayımlanma Tarihi 10 Ocak 2020
Gönderilme Tarihi 16 Ağustos 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 22 Sayı: 1

Kaynak Göster

APA Petik, T., & Gökmen, B. T. (2020). Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 255-268. https://doi.org/10.25092/baunfbed.680775
AMA Petik T, Gökmen BT. Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute. BAUN Fen. Bil. Enst. Dergisi. Ocak 2020;22(1):255-268. doi:10.25092/baunfbed.680775
Chicago Petik, Tuğba, ve Burak Tufan Gökmen. “Alternative Characterizations of Some Linear Combinations of an Idempotent Matrix and a Tripotent Matrix That Commute”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 1 (Ocak 2020): 255-68. https://doi.org/10.25092/baunfbed.680775.
EndNote Petik T, Gökmen BT (01 Ocak 2020) Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 255–268.
IEEE T. Petik ve B. T. Gökmen, “Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute”, BAUN Fen. Bil. Enst. Dergisi, c. 22, sy. 1, ss. 255–268, 2020, doi: 10.25092/baunfbed.680775.
ISNAD Petik, Tuğba - Gökmen, Burak Tufan. “Alternative Characterizations of Some Linear Combinations of an Idempotent Matrix and a Tripotent Matrix That Commute”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (Ocak 2020), 255-268. https://doi.org/10.25092/baunfbed.680775.
JAMA Petik T, Gökmen BT. Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute. BAUN Fen. Bil. Enst. Dergisi. 2020;22:255–268.
MLA Petik, Tuğba ve Burak Tufan Gökmen. “Alternative Characterizations of Some Linear Combinations of an Idempotent Matrix and a Tripotent Matrix That Commute”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 1, 2020, ss. 255-68, doi:10.25092/baunfbed.680775.
Vancouver Petik T, Gökmen BT. Alternative characterizations of some linear combinations of an idempotent matrix and a tripotent matrix that commute. BAUN Fen. Bil. Enst. Dergisi. 2020;22(1):255-68.