Research Article
BibTex RIS Cite

Fizik öğretmen adaylarının GeoGebra destekli öğretim materyali geliştirme sürecinin araştırılması

Year 2023, Volume: 25 Issue: 1, 90 - 106, 16.01.2023
https://doi.org/10.25092/baunfbed.1126834

Abstract

Bu çalışmada hazır teknolojinin kullanıldığı eğitim yöntemlerinden farklı olarak fizik öğretmen adaylarının bilgisayar destekli materyal geliştirme becerilerini geliştirmeye yönelik etkinlikler tasarlanmıştır. Çalışma Ankara'da bir devlet üniversitesinin Fizik Eğitimi programında yer alan “Öğretim Teknolojileri ve Materyal Tasarımı” dersinde gerçekleştirilmiştir. Bu süreçte öğretmen adaylarına sadece teknoloji temelli hazır ders materyallerini kullanmaları değil, kendi ders materyallerini hazırlamaları konusunda da rehberlik edilmiştir. Materyal tasarımları için GeoGebra ücretsiz ve çok dilli dinamik bir yazılım olması nedeniyle tercih edilmiştir. Değerlendirme aşamasında ürün, malzeme ve tasarım kriterleri süreçle birlikte ele alınmıştır. Sonuç olarak, fizik öğretmen adaylarının GeoGebra kullanarak kendi ders materyallerini geliştirme becerisi kazandıkları belirlenmiştir. Fizik öğretmen adaylarının GeoGebra'yı fizik derslerinde de destekleyici bir yazılım olarak kullanabilecekleri görülmüştür.

Supporting Institution

Hacettepe Üniversitesi

References

  • Gündüz, Ş., & Ferhan O., Bilgi çağında öğretmen adaylarının eğitiminde öğretim teknolojileri ve materyal geliştirme dersinin önemi, The Turkish Online Journal of Educational Technology, 3(1), 43-48, (2004).
  • Geçer, K.A.,Teknik öğretmen adaylarının öğretim teknolojisi ve materyal geliştirme dersine yönelik deneyimleri. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 1-25, (2010).
  • Yazar, T., Öğretmen adaylarının öğretim teknolojileri ve materyal tasarımı dersi hakkındaki görüşleri. Uluslararası Eğitim Programları ve Öğretim Çalışmaları Dergisi, 5(9), 23-34, (2015).
  • Laborde C., The computer as part of the learning environment: The case of geometry. In: Keitel C., Ruthven K. (eds), Learning from Computers: Mathematics Education and Technology. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 121. Springer, Berlin, Heidelberg, (1993).
  • Hudson, J. N., Computer-aided learning in the real world of medical education: Does the quality of interaction with the computer affect student learning? Medical Education, 38, 887–895, (2004).
  • Niedderer, H., Schecker, H. & Bethge, T., The role of computer-aided modelling in learning physics. Journal of Computer Assisted Learning, 7, 84-95, (1991).
  • Mironov, V., Boland, T., Trusk, T., Forgacs, G., Roger R., & Markwald, R. R., Organ printing: Computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 21(4), 157, (2003).
  • Moos, D. C., Azevedo, R., Learning with computer-based learning environments: A literature, review of computer self-efficacy, Review of Educational Research, 79(2), 576-600, (2009).
  • Spiezia, V., Does computer use increase educational achievements? Student-level evidence from PISA. OECD Journal: Economic Studies, 2010(1), 1-22, (2010).
  • Schacter, J., & Facnano, C., Does computer technology improve student learning and achievement? How? When? and under what conditions? Journal Educational Computing Research, 20(4),329-343, (1999).
  • Papastergiou, M., Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52, 1-12, (2009).
  • Lai, K.W., &Smith, L.A., Tertiary students’ understandings and practices of informal learning: A New Zealand case study. Australasian Journal of Educational Technology, 33(2). https://doi.org/10.14742/ajet.2937, (2017).
  • Chang, K.E., Sung, Y.T., & Lin, S.F., Computer-assisted learning for mathematical problem solving. Computers & Education, 46, 140–151, (2006).
  • Witte, K.D., Haelermans, C., & Rogge, N., The effectiveness of a computer-assisted math learning program. Journal of Computer Assisted Learning, 31, 314-329. doi: 10.1111/jcal.12090, (2014).
  • Çankaya, S., & Karamete, A., Eğitsel bilgisayar oyunlarının öğrencilerin matematik dersine ve eğitsel bilgisayar oyunlarına yönelik tutumlarına etkisi. Mersin University Journal of the Faculty of Education, 4(2), 115-127, (2008).
  • Boz, N. , Dynamic visualization and software environments. The Turkish Online Journal of Educational Technology, 4(1), 26-32, (2005).
  • Yılmaz, K.G., The effect of dynamic geometry software and physical manipulatives on candidate teachers’ transformational geometry success. Educational Sciences: Theory & Practice, 15(5), 1417-1435, (2015).
  • Ruthven, K., Hennessy, S.,& Deaney, R., Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers & Education, 51(1), 297-317, (2008).
  • GeoGebra [Computer software]. Linz, Austria: International GeoGebra Institute. https://geogebra.org (10.06.2022)
  • Hohenwarter, M., Hohenwarter, J.&Kreis, Y., & Lavicza, Z., Teaching and learning calculus with free dynamic mathematics software GeoGebra. 11th International Congress on Mathematical Education (ICME11). Mexico. Retrieved July 28, 2017 from https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf., (2008).
  • Saha, A.R., Fauzi, A., Ayub. M., & Tarmizi, A.R., The effects of geogebra on mathematics achievement: Enlightening coordinate geometry learning. Procedia Social and Behavioral Sciences, 8, 686–693, (2010).
  • Žılınskıenė, I., & Demirbilek, M., Use of geogebra in primary math education in Lithuania: An exploratory study from teachers’ perspective. Informatics in Education, 14(1), 127–142, (2015).
  • Zengin, Y., Furkan, H., & Kutluca, T., The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry, Procedia - Social and Behavioral Sciences, 31,183-187, (2012).
  • Zengin, Y., Investigating the use of the Khan Academy and mathematics software with a flipped classroom approach in mathematics teaching, Educational Technology & Society, 2 (2), 89–100, (2017).
  • Hohenwarter, M., GeoGebra-didaktische materialien und anwendungen für den mathematikunterricht, Doctoral dissertation, University of Salzburg, Austria. https://archive.geogebra.org/static/publications/mhohen_diss.pdf., (1.11.2022).
  • Takaci, D., Stankov, G.& Milanovic, I., Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computer & Education, 82, 421-431, (2015).
  • Williams, C., Charles-Ogan, G., & Adesope, R.Y., The Geogebra interactive software and senior secondary school three (sss3) students’ interest and achievement in mathematics. International Journal of Mathematics and Statistics Studies, 5(1), 1-8, (2017).
  • Solvang,L., Haglund, J., How can GeoGebra support physics education in upper-secondary school—a review, Physics Education, 56 (2021) 055011 (13pp), (2021).
  • Kolar, P., GeoGebra for secondary school shysics, the multimedia in physics teaching and learning community IOP Conf. Series: Journal of Physics: Conf. Series 1223 (2019) 012008 IOP Publishing doi:10.1088/1742-6596/1223/1/012008, (2019).
  • Marciuc D., and Miron C., Understanding multiple reflections in two plane mirrors by building computer simulations, Romanian Reports in Physics, 70, 902, (2018).
  • Walsh T., Creating interactive physics simulations using the power of GeoGebra Physics Teacher, 55 316–7, (2017).
  • Malgieri, M., Onorato, P., & Ambrosis, A. D., Teaching quantum physics by the sum over paths approach and GeoGebra simulations. European Journal of Physics, 35, 1- 2, (2014).
  • Singh, J., Sampath, H., & Sivaswamy, J., An open source virtual lab for school physics education. In the National Conference on Open Source Software (NCOSS-2009), India, (2009).
  • Rodríguez, Y., Santana, A., & Mendoza, L. M., Physics education through computational tools: The case of geometrical and physical optics, Physics Education, 48(5), 621-628, (2013).
  • Shreeve, M.W. (2008). Beyond the didactic classroom: Educational models to encourage active student involvement in learning, Journal of Chiropratic Education, 22 (1): 23–28. https://doi.org/10.7899/1042-5055-22.1.23.
  • Czekanski, E.K. & Wolf, Z.R., Encouraging and evaluating class participation, Journal of University Teaching&Learning Practice, vol.10, Issue 1, (2013).
  • Fidan, N.K., İlköğretimde araç gereç kullanımına ilişkin öğretmen görüşleri, Kuramsal Eğitimbilim,1(1), 48-61, (2008).
  • Hohenwarter, M., & Lavicza, Z. Mathematics teacher development with ICT: towards an international GeoGebra institute. In D. Küchemann (Ed.), Proceedings of the British Society for Research intoLearning Mathematics. 27(3), 49-54, (2007)
  • Marciuc, D., Miron, C., & Barna, E.S., Using geogebra and python software for teaching motion in a uniform gravitational field. Romanian Reports in Physics, 68(4), 1603–1620, (2016).
  • Hancock, B., Windridge, K. & Ockleford, E., An introduction to qualitative research. The NIHR RDS EM / YH, 13-14. https://www.rds-yh.nihr.ac.uk/wp-content/uploads/2013/05/5_Introduction-to-qualitative-research-2009.pdf., (1.11.2022), (2007).
  • Hsieh, H.F. & Shannon S.E., Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277-1288, (2005).
  • Solvang, L. & Haglung, J., Geogebra in physics education. Edulearn18 Proceedings, Issn 2340-1117, p. 9667-9674, (2018).
  • Bhagat, K. K., & Chang, C.Y., Visualizing projectile motion using a dynamic mathematical software: GeoGebra. International Science Education Conference (ISEC) (pp.143-159). Singapore, (2014).
  • Riberio, B.N.M., & Carvalho, C.V.A. A., Proposal of potentially meaningful material for teaching of vector mechanics. Creative Education, 5, 1929-1935, (2014).
  • Kllogjeri, P. & Kllogjeri, A., Geogebra for solving problems of physics. M.D. Lytras et al. (Eds.): WSKS 2010, Part II, CCIS 112, pp. 424–428, 2010. Springer-Verlag Berlin Heidelberg, (2010).
  • Preiner, J., Introducing dynamic mathematics software to mathematics teachers: The Case of GeoGebra, (Dissertation in Mathematics Education Faculty of Natural Sciences, University of Salzburg, Austria). https://archive.geogebra.org/static/publications/jpreiner-dissertation.pdf. (1.11.2022). (2008).

Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers

Year 2023, Volume: 25 Issue: 1, 90 - 106, 16.01.2023
https://doi.org/10.25092/baunfbed.1126834

Abstract

In contrast to educational methods, which is using ready-made technology, in this study, activities were designed aiming at improving pre-service physics teachers’ computer-aided material development skills. The study was realized in the “Teaching Technologies and Material Design” course at the Physics Education program of a state university in Ankara. During this process, pre-service teachers have been guided not only to use technology-based pre-made course materials but also to prepare their own course materials. For material designs, GeoGebra was preferred because it is free and multilingual dynamic software. During the evaluation phase, the product was handled together with the process taking into consideration material design criteria. As a result, it was determined that pre-service physics teachers gained the ability to develop their own course materials using GeoGebra. It was seen that pre-service physics teachers could be used GeoGebra in the physics classes as a supporting software, too.

References

  • Gündüz, Ş., & Ferhan O., Bilgi çağında öğretmen adaylarının eğitiminde öğretim teknolojileri ve materyal geliştirme dersinin önemi, The Turkish Online Journal of Educational Technology, 3(1), 43-48, (2004).
  • Geçer, K.A.,Teknik öğretmen adaylarının öğretim teknolojisi ve materyal geliştirme dersine yönelik deneyimleri. Yüzüncü Yıl Üniversitesi Eğitim Fakültesi Dergisi, 7(2), 1-25, (2010).
  • Yazar, T., Öğretmen adaylarının öğretim teknolojileri ve materyal tasarımı dersi hakkındaki görüşleri. Uluslararası Eğitim Programları ve Öğretim Çalışmaları Dergisi, 5(9), 23-34, (2015).
  • Laborde C., The computer as part of the learning environment: The case of geometry. In: Keitel C., Ruthven K. (eds), Learning from Computers: Mathematics Education and Technology. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 121. Springer, Berlin, Heidelberg, (1993).
  • Hudson, J. N., Computer-aided learning in the real world of medical education: Does the quality of interaction with the computer affect student learning? Medical Education, 38, 887–895, (2004).
  • Niedderer, H., Schecker, H. & Bethge, T., The role of computer-aided modelling in learning physics. Journal of Computer Assisted Learning, 7, 84-95, (1991).
  • Mironov, V., Boland, T., Trusk, T., Forgacs, G., Roger R., & Markwald, R. R., Organ printing: Computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 21(4), 157, (2003).
  • Moos, D. C., Azevedo, R., Learning with computer-based learning environments: A literature, review of computer self-efficacy, Review of Educational Research, 79(2), 576-600, (2009).
  • Spiezia, V., Does computer use increase educational achievements? Student-level evidence from PISA. OECD Journal: Economic Studies, 2010(1), 1-22, (2010).
  • Schacter, J., & Facnano, C., Does computer technology improve student learning and achievement? How? When? and under what conditions? Journal Educational Computing Research, 20(4),329-343, (1999).
  • Papastergiou, M., Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52, 1-12, (2009).
  • Lai, K.W., &Smith, L.A., Tertiary students’ understandings and practices of informal learning: A New Zealand case study. Australasian Journal of Educational Technology, 33(2). https://doi.org/10.14742/ajet.2937, (2017).
  • Chang, K.E., Sung, Y.T., & Lin, S.F., Computer-assisted learning for mathematical problem solving. Computers & Education, 46, 140–151, (2006).
  • Witte, K.D., Haelermans, C., & Rogge, N., The effectiveness of a computer-assisted math learning program. Journal of Computer Assisted Learning, 31, 314-329. doi: 10.1111/jcal.12090, (2014).
  • Çankaya, S., & Karamete, A., Eğitsel bilgisayar oyunlarının öğrencilerin matematik dersine ve eğitsel bilgisayar oyunlarına yönelik tutumlarına etkisi. Mersin University Journal of the Faculty of Education, 4(2), 115-127, (2008).
  • Boz, N. , Dynamic visualization and software environments. The Turkish Online Journal of Educational Technology, 4(1), 26-32, (2005).
  • Yılmaz, K.G., The effect of dynamic geometry software and physical manipulatives on candidate teachers’ transformational geometry success. Educational Sciences: Theory & Practice, 15(5), 1417-1435, (2015).
  • Ruthven, K., Hennessy, S.,& Deaney, R., Constructions of dynamic geometry: A study of the interpretative flexibility of educational software in classroom practice. Computers & Education, 51(1), 297-317, (2008).
  • GeoGebra [Computer software]. Linz, Austria: International GeoGebra Institute. https://geogebra.org (10.06.2022)
  • Hohenwarter, M., Hohenwarter, J.&Kreis, Y., & Lavicza, Z., Teaching and learning calculus with free dynamic mathematics software GeoGebra. 11th International Congress on Mathematical Education (ICME11). Mexico. Retrieved July 28, 2017 from https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf., (2008).
  • Saha, A.R., Fauzi, A., Ayub. M., & Tarmizi, A.R., The effects of geogebra on mathematics achievement: Enlightening coordinate geometry learning. Procedia Social and Behavioral Sciences, 8, 686–693, (2010).
  • Žılınskıenė, I., & Demirbilek, M., Use of geogebra in primary math education in Lithuania: An exploratory study from teachers’ perspective. Informatics in Education, 14(1), 127–142, (2015).
  • Zengin, Y., Furkan, H., & Kutluca, T., The effect of dynamic mathematics software geogebra on student achievement in teaching of trigonometry, Procedia - Social and Behavioral Sciences, 31,183-187, (2012).
  • Zengin, Y., Investigating the use of the Khan Academy and mathematics software with a flipped classroom approach in mathematics teaching, Educational Technology & Society, 2 (2), 89–100, (2017).
  • Hohenwarter, M., GeoGebra-didaktische materialien und anwendungen für den mathematikunterricht, Doctoral dissertation, University of Salzburg, Austria. https://archive.geogebra.org/static/publications/mhohen_diss.pdf., (1.11.2022).
  • Takaci, D., Stankov, G.& Milanovic, I., Efficiency of learning environment using GeoGebra when calculus contents are learned in collaborative groups. Computer & Education, 82, 421-431, (2015).
  • Williams, C., Charles-Ogan, G., & Adesope, R.Y., The Geogebra interactive software and senior secondary school three (sss3) students’ interest and achievement in mathematics. International Journal of Mathematics and Statistics Studies, 5(1), 1-8, (2017).
  • Solvang,L., Haglund, J., How can GeoGebra support physics education in upper-secondary school—a review, Physics Education, 56 (2021) 055011 (13pp), (2021).
  • Kolar, P., GeoGebra for secondary school shysics, the multimedia in physics teaching and learning community IOP Conf. Series: Journal of Physics: Conf. Series 1223 (2019) 012008 IOP Publishing doi:10.1088/1742-6596/1223/1/012008, (2019).
  • Marciuc D., and Miron C., Understanding multiple reflections in two plane mirrors by building computer simulations, Romanian Reports in Physics, 70, 902, (2018).
  • Walsh T., Creating interactive physics simulations using the power of GeoGebra Physics Teacher, 55 316–7, (2017).
  • Malgieri, M., Onorato, P., & Ambrosis, A. D., Teaching quantum physics by the sum over paths approach and GeoGebra simulations. European Journal of Physics, 35, 1- 2, (2014).
  • Singh, J., Sampath, H., & Sivaswamy, J., An open source virtual lab for school physics education. In the National Conference on Open Source Software (NCOSS-2009), India, (2009).
  • Rodríguez, Y., Santana, A., & Mendoza, L. M., Physics education through computational tools: The case of geometrical and physical optics, Physics Education, 48(5), 621-628, (2013).
  • Shreeve, M.W. (2008). Beyond the didactic classroom: Educational models to encourage active student involvement in learning, Journal of Chiropratic Education, 22 (1): 23–28. https://doi.org/10.7899/1042-5055-22.1.23.
  • Czekanski, E.K. & Wolf, Z.R., Encouraging and evaluating class participation, Journal of University Teaching&Learning Practice, vol.10, Issue 1, (2013).
  • Fidan, N.K., İlköğretimde araç gereç kullanımına ilişkin öğretmen görüşleri, Kuramsal Eğitimbilim,1(1), 48-61, (2008).
  • Hohenwarter, M., & Lavicza, Z. Mathematics teacher development with ICT: towards an international GeoGebra institute. In D. Küchemann (Ed.), Proceedings of the British Society for Research intoLearning Mathematics. 27(3), 49-54, (2007)
  • Marciuc, D., Miron, C., & Barna, E.S., Using geogebra and python software for teaching motion in a uniform gravitational field. Romanian Reports in Physics, 68(4), 1603–1620, (2016).
  • Hancock, B., Windridge, K. & Ockleford, E., An introduction to qualitative research. The NIHR RDS EM / YH, 13-14. https://www.rds-yh.nihr.ac.uk/wp-content/uploads/2013/05/5_Introduction-to-qualitative-research-2009.pdf., (1.11.2022), (2007).
  • Hsieh, H.F. & Shannon S.E., Three approaches to qualitative content analysis. Qualitative Health Research, 15 (9), 1277-1288, (2005).
  • Solvang, L. & Haglung, J., Geogebra in physics education. Edulearn18 Proceedings, Issn 2340-1117, p. 9667-9674, (2018).
  • Bhagat, K. K., & Chang, C.Y., Visualizing projectile motion using a dynamic mathematical software: GeoGebra. International Science Education Conference (ISEC) (pp.143-159). Singapore, (2014).
  • Riberio, B.N.M., & Carvalho, C.V.A. A., Proposal of potentially meaningful material for teaching of vector mechanics. Creative Education, 5, 1929-1935, (2014).
  • Kllogjeri, P. & Kllogjeri, A., Geogebra for solving problems of physics. M.D. Lytras et al. (Eds.): WSKS 2010, Part II, CCIS 112, pp. 424–428, 2010. Springer-Verlag Berlin Heidelberg, (2010).
  • Preiner, J., Introducing dynamic mathematics software to mathematics teachers: The Case of GeoGebra, (Dissertation in Mathematics Education Faculty of Natural Sciences, University of Salzburg, Austria). https://archive.geogebra.org/static/publications/jpreiner-dissertation.pdf. (1.11.2022). (2008).
There are 46 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Research Articles
Authors

Sema Çıldır 0000-0002-2129-1981

Ahmet İlhan Şen 0000-0002-9913-8573

Publication Date January 16, 2023
Submission Date June 6, 2022
Published in Issue Year 2023 Volume: 25 Issue: 1

Cite

APA Çıldır, S., & Şen, A. İ. (2023). Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 90-106. https://doi.org/10.25092/baunfbed.1126834
AMA Çıldır S, Şen Aİ. Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers. BAUN Fen. Bil. Enst. Dergisi. January 2023;25(1):90-106. doi:10.25092/baunfbed.1126834
Chicago Çıldır, Sema, and Ahmet İlhan Şen. “Investigation of the GeoGebra-Supported Teaching Material Development Process of Pre-Service Physics Teachers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 1 (January 2023): 90-106. https://doi.org/10.25092/baunfbed.1126834.
EndNote Çıldır S, Şen Aİ (January 1, 2023) Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 90–106.
IEEE S. Çıldır and A. İ. Şen, “Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers”, BAUN Fen. Bil. Enst. Dergisi, vol. 25, no. 1, pp. 90–106, 2023, doi: 10.25092/baunfbed.1126834.
ISNAD Çıldır, Sema - Şen, Ahmet İlhan. “Investigation of the GeoGebra-Supported Teaching Material Development Process of Pre-Service Physics Teachers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (January 2023), 90-106. https://doi.org/10.25092/baunfbed.1126834.
JAMA Çıldır S, Şen Aİ. Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers. BAUN Fen. Bil. Enst. Dergisi. 2023;25:90–106.
MLA Çıldır, Sema and Ahmet İlhan Şen. “Investigation of the GeoGebra-Supported Teaching Material Development Process of Pre-Service Physics Teachers”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 1, 2023, pp. 90-106, doi:10.25092/baunfbed.1126834.
Vancouver Çıldır S, Şen Aİ. Investigation of the GeoGebra-supported teaching material development process of pre-service physics teachers. BAUN Fen. Bil. Enst. Dergisi. 2023;25(1):90-106.