Research Article
BibTex RIS Cite

Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi

Year 2023, Volume: 25 Issue: 1, 137 - 149, 16.01.2023
https://doi.org/10.25092/baunfbed.1151784

Abstract

ABSP (Atmosferik Basınçlı Soğuk Plazma) işlemi, polimer ve metal malzemelerin yapıştırma uygulaması öncesinde yüzey özelliklerini geliştirerek istenilen düzeye getirebilmek için yaygın olarak kullanılmaktadır. ABSP, ekonomik ve çevre dostu bir yöntem olup, bu yöntemle malzeme yüzeyleri etkili bir şekilde değiştirilir. Bu çalışmada, polipropilen (PP) ve galvaniz kaplı çelik (H300LAD) malzeme yüzeylerinin modifikasyonu için soğuk plazma yöntemi kullanılmıştır. Uygulama mesafesi ve tarama (paso) sayısı parametrelerinin belirtilen malzemelerin yapışma bağı dayanımları üzerindeki etkisi araştırılmıştır. ABSP uygulama sonrası, malzemelerin yapışma davranışını değerlendirebilmek amacıyla çekme testi kullanılmıştır. ABSP’nin yapışma dayanımı üzerindeki etkisi, temas açısı ölçümleriyle de ilişkilendirilmiştir. ABSP uygulaması sonrası, malzemelerin yapışma mukavemetinde belirgin oranda artış gözlenmiş, malzemeye daha yakın uygulama yapıldığında daha yüksek yapışma mukavemeti değerlerine ulaşılacağı sonucuna ulaşılmıştır.

Supporting Institution

TÜBİTAK BİDEB

Project Number

119C206

References

  • Wolf, R., Atmospheric Pressure Plasma for Surface Modification, Scrivener, Canada, (2013).
  • Ebnessajjad, S., Surface Treatment of Materials for Adhesion Bonding (Second Edition), Elsevier Inc, USA, (2014).
  • Pinson, J., Thiry, D., Surface Modification of Polymers: Methods and Applications, Wiley-VCH, Germany, (2020).
  • Johansson, K., Applied Plastics Engıneering Handbook Processing, Materials, And Applications Second Edition in Kutz, M.,Surface Modification of Plastics ,William Andrew, 443-487,USA, (2017).
  • Kusano, J., Atmospheric pressure plasma processing for polymer adhesion: A review, The Journal of Adhesion, 90, 755-777, (2014).
  • Carrino, L., Moroni, G., ve Polini, W., Cold plasma treatment of polypropylene surface: a study on wettability and adhesion, Journal of Materials Processing Technology, 121, 373–382, (2002).
  • Mandolfino, C., Lertora, E., Gambaro, C., Bruno, M., Improving adhesion performance of polyethylene surfaces by cold plasma treatment, Meccanica, 49:2299–2306, (2014).
  • Encinas, N., Abenojar, J. ve Martínez, M. A., Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, International Journal of Adhesion and Adhesives, 33, 1–6, (2012).
  • Ku, J. H., Jung, I. H., Rhee, K. Y. ve Park, S. J., Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites Part B: Engineering, 45(1), 1282–1287, (2013).
  • Mandolfino, C., Lertora, E., Gambaro, C. (2014) Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates, Key Engineering Materials, 611-612, 1484-1493, (2014).
  • Noeske, M., Degenhardt, J., Strudthoff, S., Lommatzsch, U., Plasma jet treatment of five polymers at atmospheric pressure: surfacemodifications and the relevance for adhesion, International Journal of Adhesion and Adhesives, 24, 171-177, (2004).
  • Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., Toth, A., Hein, L.R.O., Surface modification of polymeric materials by cold atmospheric plasma jet, Applied Surface Science, 314, 367–375, (2014).
  • Maroofi, A., Safa, N.N., Ghomi, H., Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, International Journal of Adhesion & Adhesives, 98, 102554, (2020).
  • Tang, S., Kwon, O.-H, Lu, N., Choi, H.-S., Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surface & Coatings Technology, 195, 298– 306, (2005).
  • Baniya, H. B., Guragain, R. P., Baniya, B. ve Subedi, D. P., Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene, International Journal of Polymer Science, (2020).
  • Tang, S., Lu, N., Myung, S., Choi, H., Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surface & Coatings Technology, 200, 5220 – 5228, (2006).
  • Kim, M.C., Song, D.K., Shin, H.S., Baeg, S., Kim, G. S., Boo, J.-H., Han, J.G., Yang, S.H., Surface modification for hydrophilic property of stainless steel treated by atmospheric–pressure plasma jet, Surface and Coatings Technology, 171, 312-316, (2003).

The effect of atmospheric pressure cold plasma application on adhesion strength of different materials

Year 2023, Volume: 25 Issue: 1, 137 - 149, 16.01.2023
https://doi.org/10.25092/baunfbed.1151784

Abstract

ABSP (Atmospheric Pressure Cold Plasma) process is widely used in order to improve the surface properties of polymers and metals before the bonding application and bring them to the desired level. ABSP is an economical and environmentally friendly method and the material surfaces are changed effectively. In this study, cold plasma method was used for the modification of polypropylene (PP) and galvanized steel (H300LAD) material surfaces. The effect of process parameters such as application distance and number of passes on the adhesion bond strength of the specified materials was investigated. After ABSP application, tensile test was used to evaluate the adhesion behavior of the materials. The effect of ABSP on adhesion strength was also correlated with contact angle measurements. After ABSP application, a significant increase was observed in the adhesion strength of the materials, and it was concluded that higher adhesion strength values would be achieved when the application was made closer to the material surfaces.

Project Number

119C206

References

  • Wolf, R., Atmospheric Pressure Plasma for Surface Modification, Scrivener, Canada, (2013).
  • Ebnessajjad, S., Surface Treatment of Materials for Adhesion Bonding (Second Edition), Elsevier Inc, USA, (2014).
  • Pinson, J., Thiry, D., Surface Modification of Polymers: Methods and Applications, Wiley-VCH, Germany, (2020).
  • Johansson, K., Applied Plastics Engıneering Handbook Processing, Materials, And Applications Second Edition in Kutz, M.,Surface Modification of Plastics ,William Andrew, 443-487,USA, (2017).
  • Kusano, J., Atmospheric pressure plasma processing for polymer adhesion: A review, The Journal of Adhesion, 90, 755-777, (2014).
  • Carrino, L., Moroni, G., ve Polini, W., Cold plasma treatment of polypropylene surface: a study on wettability and adhesion, Journal of Materials Processing Technology, 121, 373–382, (2002).
  • Mandolfino, C., Lertora, E., Gambaro, C., Bruno, M., Improving adhesion performance of polyethylene surfaces by cold plasma treatment, Meccanica, 49:2299–2306, (2014).
  • Encinas, N., Abenojar, J. ve Martínez, M. A., Development of improved polypropylene adhesive bonding by abrasion and atmospheric plasma surface modifications, International Journal of Adhesion and Adhesives, 33, 1–6, (2012).
  • Ku, J. H., Jung, I. H., Rhee, K. Y. ve Park, S. J., Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites Part B: Engineering, 45(1), 1282–1287, (2013).
  • Mandolfino, C., Lertora, E., Gambaro, C. (2014) Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates, Key Engineering Materials, 611-612, 1484-1493, (2014).
  • Noeske, M., Degenhardt, J., Strudthoff, S., Lommatzsch, U., Plasma jet treatment of five polymers at atmospheric pressure: surfacemodifications and the relevance for adhesion, International Journal of Adhesion and Adhesives, 24, 171-177, (2004).
  • Kostov, K.G., Nishime, T.M.C., Castro, A.H.R., Toth, A., Hein, L.R.O., Surface modification of polymeric materials by cold atmospheric plasma jet, Applied Surface Science, 314, 367–375, (2014).
  • Maroofi, A., Safa, N.N., Ghomi, H., Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, International Journal of Adhesion & Adhesives, 98, 102554, (2020).
  • Tang, S., Kwon, O.-H, Lu, N., Choi, H.-S., Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surface & Coatings Technology, 195, 298– 306, (2005).
  • Baniya, H. B., Guragain, R. P., Baniya, B. ve Subedi, D. P., Cold Atmospheric Pressure Plasma Jet for the Improvement of Wettability of Polypropylene, International Journal of Polymer Science, (2020).
  • Tang, S., Lu, N., Myung, S., Choi, H., Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surface & Coatings Technology, 200, 5220 – 5228, (2006).
  • Kim, M.C., Song, D.K., Shin, H.S., Baeg, S., Kim, G. S., Boo, J.-H., Han, J.G., Yang, S.H., Surface modification for hydrophilic property of stainless steel treated by atmospheric–pressure plasma jet, Surface and Coatings Technology, 171, 312-316, (2003).
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

İrem Sönmez 0000-0002-6027-4826

Kadir Ayas 0000-0002-8538-5792

Murat Dal 0000-0002-5803-3097

Kadir Çavdar 0000-0001-9126-0315

Project Number 119C206
Publication Date January 16, 2023
Submission Date July 31, 2022
Published in Issue Year 2023 Volume: 25 Issue: 1

Cite

APA Sönmez, İ., Ayas, K., Dal, M., Çavdar, K. (2023). Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(1), 137-149. https://doi.org/10.25092/baunfbed.1151784
AMA Sönmez İ, Ayas K, Dal M, Çavdar K. Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi. BAUN Fen. Bil. Enst. Dergisi. January 2023;25(1):137-149. doi:10.25092/baunfbed.1151784
Chicago Sönmez, İrem, Kadir Ayas, Murat Dal, and Kadir Çavdar. “Atmosferik basınçlı soğuk Plazma uygulamasının Farklı Malzemelerin yapışma dayanımına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 1 (January 2023): 137-49. https://doi.org/10.25092/baunfbed.1151784.
EndNote Sönmez İ, Ayas K, Dal M, Çavdar K (January 1, 2023) Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 1 137–149.
IEEE İ. Sönmez, K. Ayas, M. Dal, and K. Çavdar, “Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi”, BAUN Fen. Bil. Enst. Dergisi, vol. 25, no. 1, pp. 137–149, 2023, doi: 10.25092/baunfbed.1151784.
ISNAD Sönmez, İrem et al. “Atmosferik basınçlı soğuk Plazma uygulamasının Farklı Malzemelerin yapışma dayanımına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/1 (January 2023), 137-149. https://doi.org/10.25092/baunfbed.1151784.
JAMA Sönmez İ, Ayas K, Dal M, Çavdar K. Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi. BAUN Fen. Bil. Enst. Dergisi. 2023;25:137–149.
MLA Sönmez, İrem et al. “Atmosferik basınçlı soğuk Plazma uygulamasının Farklı Malzemelerin yapışma dayanımına Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 1, 2023, pp. 137-49, doi:10.25092/baunfbed.1151784.
Vancouver Sönmez İ, Ayas K, Dal M, Çavdar K. Atmosferik basınçlı soğuk plazma uygulamasının farklı malzemelerin yapışma dayanımına etkisi. BAUN Fen. Bil. Enst. Dergisi. 2023;25(1):137-49.