Research Article
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 1, 7 - 28, 01.06.2019

Abstract

References

  • Yusuf Sökmen (2012), Genelleştirilmiş Caputo Kesirli Türevi Ve Uygulamaları, Ahi Evran Üniversitesi, Yüksek Lisans Tezi, Kırşehir
  • SeanTownsend, (2015), NumericalMethods in FractionalCalculus, California StatePolytechnicUniversity, Pomona, Master Thesis
  • Ali Karcı, (2015), Kesir Dereceli Türevin Yeni YaklaşımınınÖzellikleri,Journal of theFaculty of Engineeringand Architecture of Gazi University,30(3):487-501
  • Ahmet Kareem (2012), Fractional Caputo-FabrizioDerivativeWith Applications, Çankaya Üniversitesi, Yüksek Lisans Tezi, Ankara
  • World ScientificBook(2014), ws-cacsd-eng, https://mechatronics.ucmerced.edu/sites/mechatronics.ucmerced.edu/files/page/documents/ws- cacsd-eng-chapter11.pdf, Accessed 27 November 2018
  • George A. Anastassiou, (2009),Riemann-LiouvilleAnd Caputo FractionalApproximation Of Csiszar'sFDivergence, SarajevoJournal Of Mathematics,5(17):3-12
  • Özkan B.,EkinciM.,Gökdoğan A.” Grunwald-Letnikov Kesir Mertebeli Diferansiyel Maskesi Kullanarak Düşük Çözünürlüklü Avuçiçi Görüntülerinin İyileştirilmesi”, Eleco 2014 Elektrik – Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 – 29 Kasım 2014, Bursa.
  • Oldham K. B., Spanier J., 1974, TheFractionalCalculus, New York andLondon, AcademicPress.
  • Podlubny I., 1999, FractionalDifferentialEquations, Mathematics in ScienceandEngineering, New York and Tokyo, AcademicPress, 198.
  • Tarasov, V. E. (2016). Three-dimensionallatticemodelswithlong-rangeinteractions of Grünwald–Letnikovtypeforfractionalgeneralization of gradientelasticity. Meccanica, 51(1), 125-138.
  • Tolba, M. F., AbdelAty, A. M., Said, L. A., Elwakil, A. S., Azar, A. T., Madian, A. H.&Radwan, A. G. (2017, May). FPGA realization of Caputo andGrünwald-Letnikovoperators. InModernCircuitsandSystems Technologies (MOCAST), 2017 6th International Conference on (pp. 1-4). IEEE.
  • Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., &Mustapha, K. (2018). Analysis of subdiffusion in disorderedandfracturedmediausing a Grünwald-Letnikovfractionalcalculus model. ComputationalGeosciences, 1-20.
  • Wang, J., Ye, Y., &Gao, X. (2015). Fractional 90 phase-shiftfilteringbased on thedouble- sidedGrünwald–Letnikovdifferintegrator. IET SignalProcessing, 9(4), 328-334.
  • Harker, M., &O’Leary, P. (2017). TrapezoidalruleanditserroranalysisfortheGrünwald- Letnikovoperator. International Journal of Dynamics and Control, 5(1), 18-29.
  • Jalalinejad, H., Tavakoli, A., &Zarmehi, F. (2018). A simpleandflexiblemodification of Grünwald–Letnikovfractionalderivative in imageprocessing. Mathematical Sciences, 12(3), 205-210.
  • John, R., &Kunju, N. (2018, April). Optimization of Grunwald-Letnikov's (GL) basedFractionalFilterUsedfor Image Enhancement. In2018 Second International Conference on InventiveCommunicationandComputational Technologies (ICICCT) (pp. 612-614). IEEE.
  • ShantanuDas, FunctionalFractionalCalculus, Springer-Verlag Berlin, Heidelberg, 2011

Üç Temel Kesir Dereceli Türev Tanımına Göre Matlab Ortamında Kesir Dereceli Türev Hesaplamaları

Year 2019, Volume: 4 Issue: 1, 7 - 28, 01.06.2019

Abstract




Bu çalımada literatürde kabul görmüüç farklı kesir derece türev tanımı olan Caputo
tanımı, Grunwald-Letnikov tanımı ve Laplace kuvvet fonksiyonu türev genellemesine göre Matlab
ortamında kesir dereceli türev hesaplamaları yapılmı
tır. Hesaplama sonuçları ve çalımada kullanılan Matlab kodları paylaılmıtır. Hesaplamalar temel matematiksel fonksiyonlar olan f (t) = et ,
f (t) = sin(t) ve polinomlar için gerçekletirilmitir. Yöntemlerin performansı sonuçların birinci derece türev sonuçları ile karılatırılması ile gerçekletirilmitir. 




References

  • Yusuf Sökmen (2012), Genelleştirilmiş Caputo Kesirli Türevi Ve Uygulamaları, Ahi Evran Üniversitesi, Yüksek Lisans Tezi, Kırşehir
  • SeanTownsend, (2015), NumericalMethods in FractionalCalculus, California StatePolytechnicUniversity, Pomona, Master Thesis
  • Ali Karcı, (2015), Kesir Dereceli Türevin Yeni YaklaşımınınÖzellikleri,Journal of theFaculty of Engineeringand Architecture of Gazi University,30(3):487-501
  • Ahmet Kareem (2012), Fractional Caputo-FabrizioDerivativeWith Applications, Çankaya Üniversitesi, Yüksek Lisans Tezi, Ankara
  • World ScientificBook(2014), ws-cacsd-eng, https://mechatronics.ucmerced.edu/sites/mechatronics.ucmerced.edu/files/page/documents/ws- cacsd-eng-chapter11.pdf, Accessed 27 November 2018
  • George A. Anastassiou, (2009),Riemann-LiouvilleAnd Caputo FractionalApproximation Of Csiszar'sFDivergence, SarajevoJournal Of Mathematics,5(17):3-12
  • Özkan B.,EkinciM.,Gökdoğan A.” Grunwald-Letnikov Kesir Mertebeli Diferansiyel Maskesi Kullanarak Düşük Çözünürlüklü Avuçiçi Görüntülerinin İyileştirilmesi”, Eleco 2014 Elektrik – Elektronik – Bilgisayar ve Biyomedikal Mühendisliği Sempozyumu, 27 – 29 Kasım 2014, Bursa.
  • Oldham K. B., Spanier J., 1974, TheFractionalCalculus, New York andLondon, AcademicPress.
  • Podlubny I., 1999, FractionalDifferentialEquations, Mathematics in ScienceandEngineering, New York and Tokyo, AcademicPress, 198.
  • Tarasov, V. E. (2016). Three-dimensionallatticemodelswithlong-rangeinteractions of Grünwald–Letnikovtypeforfractionalgeneralization of gradientelasticity. Meccanica, 51(1), 125-138.
  • Tolba, M. F., AbdelAty, A. M., Said, L. A., Elwakil, A. S., Azar, A. T., Madian, A. H.&Radwan, A. G. (2017, May). FPGA realization of Caputo andGrünwald-Letnikovoperators. InModernCircuitsandSystems Technologies (MOCAST), 2017 6th International Conference on (pp. 1-4). IEEE.
  • Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., &Mustapha, K. (2018). Analysis of subdiffusion in disorderedandfracturedmediausing a Grünwald-Letnikovfractionalcalculus model. ComputationalGeosciences, 1-20.
  • Wang, J., Ye, Y., &Gao, X. (2015). Fractional 90 phase-shiftfilteringbased on thedouble- sidedGrünwald–Letnikovdifferintegrator. IET SignalProcessing, 9(4), 328-334.
  • Harker, M., &O’Leary, P. (2017). TrapezoidalruleanditserroranalysisfortheGrünwald- Letnikovoperator. International Journal of Dynamics and Control, 5(1), 18-29.
  • Jalalinejad, H., Tavakoli, A., &Zarmehi, F. (2018). A simpleandflexiblemodification of Grünwald–Letnikovfractionalderivative in imageprocessing. Mathematical Sciences, 12(3), 205-210.
  • John, R., &Kunju, N. (2018, April). Optimization of Grunwald-Letnikov's (GL) basedFractionalFilterUsedfor Image Enhancement. In2018 Second International Conference on InventiveCommunicationandComputational Technologies (ICICCT) (pp. 612-614). IEEE.
  • ShantanuDas, FunctionalFractionalCalculus, Springer-Verlag Berlin, Heidelberg, 2011
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section PAPERS
Authors

Mahdi Hatami Varjovi

Furkan Öztemiz

Kenan Donuk

Buket Toptaş This is me

Hüseyin Fırat This is me

Mücahit Karaduman

Mevlüt İnan

Publication Date June 1, 2019
Submission Date December 10, 2018
Acceptance Date January 8, 2019
Published in Issue Year 2019 Volume: 4 Issue: 1

Cite

APA Hatami Varjovi, M., Öztemiz F., Donuk, K., Toptaş B., et al. (2019). Üç Temel Kesir Dereceli Türev Tanımına Göre Matlab Ortamında Kesir Dereceli Türev Hesaplamaları. Computer Science, 4(1), 7-28.

The Creative Commons Attribution 4.0 International License 88x31.png is applied to all research papers published by JCS and

A Digital Object Identifier (DOI) Logo_TM.png is assigned for each published paper