Research Article
BibTex RIS Cite

Matematik Okuryazarlığı Soru Yazma Sürecinde Yer Alan Eylemlerin Belirlenmesi ve Sıralarının Kestirilmesi

Year 2019, Volume: 14 Issue: 28, 372 - 390, 31.12.2019
https://doi.org/10.35675/befdergi.643469

Abstract

Bu
çalışma, matematik okuryazarlığı soru yazma sürecinde yer alan eylemleri ve bu
eylemlerin süreçte sıklıkla nasıl sıralandığını belirlemeyi amaçlamaktadır. Bu
amaçla iki aşamalı bir yöntem uygulanmıştır. Birinci aşamada 47, ikinci aşamada
65 ilköğretim matematik öğretmen adayının 3-6 kişilik gruplar halinde yürüttüğü
soru yazma süreçleri incelenmiştir. Birinci aşamada, raportör öğretmen
adaylarının kendi gruplarındakiher bir soru yazma sürecini aktardıkları
kompozisyonlar içerik analizine tabi tutularak süreçte yer alan eylemler belirlenmiştir.
Bu eylemlerden Süreç Takip Formu oluşturulmuştur. İkinci aşamada, raportör
öğretmen adaylarının kendi gruplarındaki soru yazma süreçlerini aktardıkları Süreç
Takip Formlarının betimsel analizi yapılarak süreçte yer alan eylemlerin
sıklıkla nasıl sıralandığı belirlenmiştir. Bu sıralamalar süreç şemaları
şeklinde bulgularda sunulmuştur. Bu şemalar
sistematik bir soru yazma süreci geliştirilmesine ilişkin bir ilk adım olarak
görülebilir. Sistematik soru yazma süreçleri öğretmen ve öğretmen adaylarının
bu konuda daha hızlı deneyim kazanmalarına ve problem yazmada yaşadıkları
güçlüklerin azaltılmasına katkı sağlayabilir.

References

  • Cai J, Hwang S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21, 401-421.
  • Chmiliar, L. (2010). Multiple-case designs. In A. J. Mills, G. Eurepas & E. Wiebe (Eds.), Encyclopedia of case study research (pp 582-583). USA: SAGE Publications.
  • Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers’ practices. Educational Studies in Mathematics,52, 243-270.
  • Demir, F. & Altun, M. (2018). Matematik Okuryazarlığı Soru Yazma Süreç ve Becerilerinin Gelişimi. Eğitim ve Bilim, 43(194), 19-41.
  • Demir, F., Altun, M., Köse, M. (2018). Matematik öğretmen adaylarının matematik okuryazarlığı soru yazma becerilerinin geliştirilmesi ve değerlendirilmesi. Yükseköğretim Kurumları (DPÜ) Tarafından desteklenen Bilimsel Araştırma Projesi, 2015-100.
  • Goldenberg, E. & Walter, M. (2003). Problem posing as a tool for teaching mathematics. In H. L. Schoen & R. I. Charles (Eds.), Teaching mathematics through problem solving (pp. 55-67). Reston, VA: National Council of Teachers of Mathematics, Inc.
  • Hancock, R.D. & Algozzine, B. (2006). Doing Case Study Research. New York: Teachers College Press.
  • McCrone, S. S., & Dossey, J. A. (2007). Mathematical literacy-It's become fundamental. Principal Leadership, 7(5), 32-37.
  • National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington (DC): NGA.
  • OECD. (2013). PISA 2015 draft mathematics framework. OECD Publishing.
  • OECD. (2016). PISA 2015 assessment and analytical framework. Science, reading, mathematic and financial literacy. Paris: OECD Publishing.
  • Pelczer, I., & Gamboa, F. (2009). Problem posing: Comparison between experts and novices. M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33th International Conferrence of the International Group for the Psychology of Mathematics Education, (pp. 353 360). Thessaloniki, Greece: PME.
  • Silber, S. & Cai, J. (2017). Pre-service teachers' free and structured mathematical problem posing. International Journal of Mathematical Education in Science and Technology, 48(2), 163-184, DOI: 10.1080/0020739X.2016.1232843.
  • Stickles, P.R. (2011). An analysis of secondary and middle school teachers’ mathematical problem posing. Investigations in Mathematics Learning, 3(2), 1-34, DOI: 10.1080/24727 466.2011.11790301.
  • Stoyanova E, Ellerton N. F. (1996). A framework for research into students’ problem posing in school mathematics. In Clarkson PC, (Ed), Technology in mathematics education. Mathematics Education Research Group of Australasia, The University of Melbourne, 518-525.
  • Vacc N.N. (1993). Implementing the “professional standards for teaching mathematics”: questioning in the mathematics classroom. Arith Teach, 41, 88–91.
  • Van Harpen X.Y., Sriraman B. (2013). Creativity and mathematical problem posing: an analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82, 201–221.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (7. bs.). Ankara: Seçkin Yayıncılık.
  • Yuan X, Sriraman B. (2011). An exploratory study of relationships between students’ creativity and mathematical problem-posing abilities. In Sriraman B, Lee KH, (Eds.), The elements of creativity and giftedness in mathematics. Rotterdam (Netherlands): Sense Publishers, 5–28.
  • Patáková, E. (2013) Teachers’ problem posing in mathematics. Procedia - Social and Behavioral Sciences 93, 836 – 841.

Determining the Actions of the Problem Posing Process in Mathematical Literacy and Estimating Their Order

Year 2019, Volume: 14 Issue: 28, 372 - 390, 31.12.2019
https://doi.org/10.35675/befdergi.643469

Abstract

This study aimed to determine the actions involved in the problem
posing process in mathematical literacy and how these actions were frequently ordered
in the process. For this purpose, a two-stage method was adopted. In the first stage
47, in the second stage 65, primary school math teacher candidates' problem
posing processes were examined as they managed groups of 3-6. For the first stage,
the compositions where reporter teacher candidates cited each problem posing process
in their own groups were subjected to a content analysis and the actions in the
process were determined. A process Monitoring Form was created from these actions.
In the second stage, the descriptive analysis of the Process Monitoring Forms
in which reporter teacher candidates cited their problem posing processes in
their own groups was carried out and it was determined how the actions in the process
were frequently ordered. These orders were presented in the findings as the
form of process charts. These charts can be seen as the first step to develop a
systematic process for posing problems. Systematic problem posing processes can
help teachers and teacher candidates gain experience faster on this matter and reduce
the difficulties they have in posing problems
.

References

  • Cai J, Hwang S. (2002). Generalized and generative thinking in US and Chinese students’ mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21, 401-421.
  • Chmiliar, L. (2010). Multiple-case designs. In A. J. Mills, G. Eurepas & E. Wiebe (Eds.), Encyclopedia of case study research (pp 582-583). USA: SAGE Publications.
  • Crespo, S. (2003). Learning to pose mathematical problems: Exploring changes in preservice teachers’ practices. Educational Studies in Mathematics,52, 243-270.
  • Demir, F. & Altun, M. (2018). Matematik Okuryazarlığı Soru Yazma Süreç ve Becerilerinin Gelişimi. Eğitim ve Bilim, 43(194), 19-41.
  • Demir, F., Altun, M., Köse, M. (2018). Matematik öğretmen adaylarının matematik okuryazarlığı soru yazma becerilerinin geliştirilmesi ve değerlendirilmesi. Yükseköğretim Kurumları (DPÜ) Tarafından desteklenen Bilimsel Araştırma Projesi, 2015-100.
  • Goldenberg, E. & Walter, M. (2003). Problem posing as a tool for teaching mathematics. In H. L. Schoen & R. I. Charles (Eds.), Teaching mathematics through problem solving (pp. 55-67). Reston, VA: National Council of Teachers of Mathematics, Inc.
  • Hancock, R.D. & Algozzine, B. (2006). Doing Case Study Research. New York: Teachers College Press.
  • McCrone, S. S., & Dossey, J. A. (2007). Mathematical literacy-It's become fundamental. Principal Leadership, 7(5), 32-37.
  • National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Governors Association Center for Best Practices and Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington (DC): NGA.
  • OECD. (2013). PISA 2015 draft mathematics framework. OECD Publishing.
  • OECD. (2016). PISA 2015 assessment and analytical framework. Science, reading, mathematic and financial literacy. Paris: OECD Publishing.
  • Pelczer, I., & Gamboa, F. (2009). Problem posing: Comparison between experts and novices. M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33th International Conferrence of the International Group for the Psychology of Mathematics Education, (pp. 353 360). Thessaloniki, Greece: PME.
  • Silber, S. & Cai, J. (2017). Pre-service teachers' free and structured mathematical problem posing. International Journal of Mathematical Education in Science and Technology, 48(2), 163-184, DOI: 10.1080/0020739X.2016.1232843.
  • Stickles, P.R. (2011). An analysis of secondary and middle school teachers’ mathematical problem posing. Investigations in Mathematics Learning, 3(2), 1-34, DOI: 10.1080/24727 466.2011.11790301.
  • Stoyanova E, Ellerton N. F. (1996). A framework for research into students’ problem posing in school mathematics. In Clarkson PC, (Ed), Technology in mathematics education. Mathematics Education Research Group of Australasia, The University of Melbourne, 518-525.
  • Vacc N.N. (1993). Implementing the “professional standards for teaching mathematics”: questioning in the mathematics classroom. Arith Teach, 41, 88–91.
  • Van Harpen X.Y., Sriraman B. (2013). Creativity and mathematical problem posing: an analysis of high school students’ mathematical problem posing in China and the USA. Educational Studies in Mathematics, 82, 201–221.
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (7. bs.). Ankara: Seçkin Yayıncılık.
  • Yuan X, Sriraman B. (2011). An exploratory study of relationships between students’ creativity and mathematical problem-posing abilities. In Sriraman B, Lee KH, (Eds.), The elements of creativity and giftedness in mathematics. Rotterdam (Netherlands): Sense Publishers, 5–28.
  • Patáková, E. (2013) Teachers’ problem posing in mathematics. Procedia - Social and Behavioral Sciences 93, 836 – 841.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Furkan Demir 0000-0003-3740-8088

Publication Date December 31, 2019
Submission Date November 6, 2019
Acceptance Date December 11, 2019
Published in Issue Year 2019 Volume: 14 Issue: 28

Cite

APA Demir, F. (2019). Matematik Okuryazarlığı Soru Yazma Sürecinde Yer Alan Eylemlerin Belirlenmesi ve Sıralarının Kestirilmesi. Bayburt Eğitim Fakültesi Dergisi, 14(28), 372-390. https://doi.org/10.35675/befdergi.643469