Research Article
BibTex RIS Cite

Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine

Year 2025, Volume: 9 Issue: 1, 130 - 144, 30.06.2025
https://doi.org/10.47897/bilmes.1697802

Abstract

In the current study, the molecular geometry, electronic characteristics, nonlinear optical (NLO) properties, and potential biological activity of 1,3-bis(4-methylphenyl)triazene (I) were investigated by a combination of experimental crystallographic data and density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level. The optimized molecular geometry was in very good agreement with experimental X-ray data, with a low root-mean-square deviation (RMSD) of 0.106 Å, verifying the computational model. The molecule demonstrated high NLO activity, possessing a first-order hyperpolarizability roughly seven times larger than that of urea, and potential application in optoelectronic and photonic devices. Frontier molecular orbital (FMO) calculation demonstrated HOMO–LUMO energy gap of 5.6015 eV in the gas-phase indicating kinetic stability, and solvent-phase calculation indicated higher reactivity and polarity at high-dielectric conditions. Global reactivity descriptors and molecular electrostatic potential (MEP) mapping identified key electrophilic and nucleophilic sites, with implications for the charge distribution of the molecule and probable modes of interaction. Mulliken and natural population analyses (NPA) also revealed electronic behavior, NPA providing more chemically meaningful charge partitioning. Thermodynamic properties -entropy, enthalpy, and heat capacity- exhibited smooth temperature dependence, which established the thermal stability of the compound. Hirshfeld surface and 2D fingerprint plots of the crystal structure highlighted the dominant role played by van der Waals interactions in crystal packing. Molecular docking studies with the HER2 receptor (PDB ID: 3PP0) showed good binding affinity (-9.8 k cal mol⁻¹) with the aid of supporting hydrogen bonding and hydrophobic interactions with prominent amino acid residues, which reflected potential anticancer activity. Combined, the findings emphasize the exciting multifunctionality of I, whose potential uses range from materials science to being a lead scaffold in drug design, particularly for HER2-targeted anticancer drugs.

References

  • P. de M. S. Figueirêdo et al., “Assessment of the biological potential of diaryltriazene-derived triazene compounds,” Sci. Rep., vol. 11, p. 2541, 2021.
  • F. Marchesi, M. Turriziani, G. Tortorelli, G. Avvisati, F. Torino, ve L. De Vecchis, “Triazene compounds: Mechanism of action and related DNA repair systems,” Pharmacol. Res., vol. 56, no. 4, pp. 275-287, 2007.
  • N. Iqbal ve N. Iqbal, “Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications,” Mol. Biol. Int., vol. 2014, p. 852748, 2014.
  • S. Lamichhane, R. P. Rai, A. Khatri, R. Adhikari, B. G. Shrestha, ve S. K. Shrestha, “Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: An in-silico approach,” J. Biomol. Struct. Dyn., vol. 41, no. 3, pp. 897-911, 2023.
  • R. B. O. Ouma, S. M. Ngari, ve J. K. Kibet, “A review of the current trends in computational approaches in drug design and metabolism,” Discov. Public Health, vol. 21, p. 108, 2024.
  • P. C. Agu et al., “Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management,” Sci. Rep., vol. 13, no. 1, p. 13398, 2023. doi: 10.1038/s41598-023-40160-2
  • M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., 2004.
  • C. Lee, W. Yang, ve R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. doi: 10.1103/PhysRevB.37.785
  • A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648-5652, 1993. doi: 10.1063/1.464913
  • R. Dennington, T. Keith, ve J. Millam, GaussView, Version 5.0 [Computer software], Semichem Inc., 2009.
  • R. G. Parr, L. V. Szentpály, ve S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121, no. 9, pp. 1922-1924, 1999. doi: 10.1021/ja983494x
  • J. Tomasi, B. Mennucci, ve R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., vol. 105, no. 8, pp. 2999-3094, 2005. doi: 10.1021/cr9904009
  • M. J. Turner et al., CrystalExplorer17 (Version 17.5) [Computer software], University of Western Australia, 2017.
  • J. J. McKinnon, D. Jayatilaka, ve M. A. Spackman, “Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces,” Chem. Commun., no. 37, pp. 3814-3816, 2007. doi: 10.1039/B704980C
  • M. A. Spackman ve D. Jayatilaka, “Hirshfeld surface analysis,” CrystEngComm, vol. 11, no. 1, pp. 19-32, 2009. doi: 10.1039/B818330A
  • F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, no. 2, pp. 129-138, 1977. doi: 10.1007/BF00549096
  • K. Aertgeerts et al., “Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein,” J. Biol. Chem., vol. 286, no. 21, pp. 18756-18765, 2011. doi: 10.1074/jbc.M110.206193
  • O. Trott ve A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010.
  • D. Biovia et al., Discovery Studio Visualizer (Version 17.2) [Computer software], Dassault Systèmes, 2016.
  • N. Karadayı, Ş. Çakmak, M. Odabaşoğlu, ve O. Büyükgüngör, “1,3-Bis(4-methylphenyl)triazene, 1-(4-chlorophenyl)-3-(4-fluorophenyl)triazene and 1-(4-fluorophenyl)-3-(4-methylphenyl)triazene,” Acta Crystallogr. Sect. E Struct. Rep. Online, vol. 61, no. 5, pp. o303-o305, 2005. doi: 10.1107/S0108270105004373
  • R. G. Parr ve W. Yang, Density-functional theory of atoms and molecules. Oxford University Press, 1989.
  • W. Koch ve M. C. Holthausen, A chemist’s guide to density functional theory, 2nd ed. Wiley-VCH, 2001.
  • Y. Zhao ve D. G. Truhlar, “Density functional theory for highly excited states: The role of exact exchange,” J. Chem. Phys., vol. 128, no. 18, p. 184103, 2008. doi: 10.1063/1.2928720
  • Y. Zhao, Y. Xie, ve H. F. Schaefer, “Benchmark studies of dipole moments and first hyperpolarizabilities of push-pull π-conjugated systems,” Theor. Chem. Acc., vol. 116, no. 1, pp. 131-137, 2006. doi: 10.1007/s00214-005-0023-6
  • W. Kohn ve L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133-A1138, 1965. doi: 10.1103/PhysRev.140.A1133
  • P. Politzer ve J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, no. 3, pp. 134-142, 2002. doi: 10.1007/s00214-002-0363-9
  • W. Yang ve R. G. Parr, “Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci. U.S.A., vol. 82, no. 20, pp. 6723-6726, 1985. doi: 10.1073/pnas.82.20.6723
  • P. Geerlings, F. De Proft, ve W. Langenaeker, “Conceptual density functional theory,” Chem. Rev., vol. 103, no. 5, pp. 1793-1874, 2003. doi: 10.1021/cr990029p
  • R. G. Parr ve R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” J. Am. Chem. Soc., vol. 105, no. 26, pp. 7512-7516, 1983. doi: 10.1021/ja00364a005
  • C. J. Cramer ve D. G. Truhlar, “Implicit solvation models: Equilibria, structure, spectra, and dynamics,” Chem. Rev., vol. 99, no. 8, pp. 2161-2200, 1999. doi: 10.1021/cr960149m
  • D. A. McQuarrie ve J. D. Simon, Physical chemistry: A molecular approach. University Science Books, 1999.
  • P. Atkins ve J. de Paula, Atkins’ physical chemistry, 10th ed. Oxford University Press, 2014.
  • K. S. Pitzer, E. R. Lippincott ve R. F. Curl, “The Thermodynamic Properties of Organic Compounds,” J. Am. Chem. Soc., vol. 67, no. 8, pp. 1341-1350, 1945. doi: 10.1021/ja01224a002
  • L. A. Curtiss, K. Raghavachari, P. C. Redfern ve J. A. Pople, “Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation,” J. Chem. Phys., vol. 106, no. 3, pp. 1063-1079, 1997. doi: 10.1063/1.473182
  • A. N. Khalilov et al., “Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(4-fluorophenyl)prop-2-en-1-one,” Acta Crystallogr. Sect. E: Crystallogr. Commun., vol. 78, no. 2, pp. 525-529, 2022. doi: 10.1107/S2056989022000343
  • C. Jelsch ve Y. B. M. Bisseyoub, “Deciphering the driving forces in crystal packing by analysis of intermolecular interactions in aromatic hydrocarbons,” IUCrJ, vol. 10, no. 5, pp. 557-567, 2023. doi: 10.1107/S2056989023005043
  • C. Bissantz, B. Kuhn ve M. Stahl, “A medicinal chemist’s guide to molecular interactions,” J. Med. Chem., vol. 53, no. 14, pp. 5061-5084, 2010. doi: 10.1021/jm100112j
  • S. Başak ve C. C. Ersanlı, “Structure elucidation of Schiff base-containing compound by quantum chemical methods,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 129-136, 2024. doi: 10.47897/bilmes.1553500
  • C. C. Ersanlı ve S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 162-177, 2024. doi: 10.47897/bilmes.1573560
  • S. Öztürk, T. Aycan, Z. Demircioğlu ve C. C. Ersanlı, “Quantum Mechanical Calculations, Hirshfeld Surface Analysis, Molecular Docking, ADME and Toxicology Studies of the Ethyl 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutrate Compound,” Int. Sci. Vocat. Stud. J., vol. 7, no. 2, pp. 109-121, 2023. doi: 10.47897/bilmes.1385170
  • D. B. Kitchen, H. Decornez, J. R. Furr ve J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discov., vol. 3, no. 11, pp. 935-949, 2004. doi: 10.1038/nrd1549
  • D. E. V. Wilman, “Triazenes as antitumor agents,” Med. Res. Rev., vol. 8, no. 1, pp. 1-20, 1988. doi: 10.1002/med.2610080102
  • C. N. Cavasotto ve A. J. W. Orry, “Ligand docking and structure-based virtual screening in drug discovery,” Curr. Top. Med. Chem., vol. 7, no. 10, pp. 1006-1014, 2007. doi: 10.2174/156802607780906468

Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine

Year 2025, Volume: 9 Issue: 1, 130 - 144, 30.06.2025
https://doi.org/10.47897/bilmes.1697802

Abstract

In the current study, the molecular geometry, electronic characteristics, nonlinear optical (NLO) properties, and potential biological activity of 1,3-bis(4-methylphenyl)triazene (I) were investigated by a combination of experimental crystallographic data and density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level. The optimized molecular geometry was in very good agreement with experimental X-ray data, with a low root-mean-square deviation (RMSD) of 0.106 Å, verifying the computational model. The molecule demonstrated high NLO activity, possessing a first-order hyperpolarizability roughly seven times larger than that of urea, and potential application in optoelectronic and photonic devices. Frontier molecular orbital (FMO) calculation demonstrated HOMO–LUMO energy gap of 5.6015 eV in the gas-phase indicating kinetic stability, and solvent-phase calculation indicated higher reactivity and polarity at high-dielectric conditions. Global reactivity descriptors and molecular electrostatic potential (MEP) mapping identified key electrophilic and nucleophilic sites, with implications for the charge distribution of the molecule and probable modes of interaction. Mulliken and natural population analyses (NPA) also revealed electronic behavior, NPA providing more chemically meaningful charge partitioning. Thermodynamic properties -entropy, enthalpy, and heat capacity- exhibited smooth temperature dependence, which established the thermal stability of the compound. Hirshfeld surface and 2D fingerprint plots of the crystal structure highlighted the dominant role played by van der Waals interactions in crystal packing. Molecular docking studies with the HER2 receptor (PDB ID: 3PP0) showed good binding affinity (-9.8 k cal mol⁻¹) with the aid of supporting hydrogen bonding and hydrophobic interactions with prominent amino acid residues, which reflected potential anticancer activity. Combined, the findings emphasize the exciting multifunctionality of I, whose potential uses range from materials science to being a lead scaffold in drug design, particularly for HER2-targeted anticancer drugs.

References

  • P. de M. S. Figueirêdo et al., “Assessment of the biological potential of diaryltriazene-derived triazene compounds,” Sci. Rep., vol. 11, p. 2541, 2021.
  • F. Marchesi, M. Turriziani, G. Tortorelli, G. Avvisati, F. Torino, ve L. De Vecchis, “Triazene compounds: Mechanism of action and related DNA repair systems,” Pharmacol. Res., vol. 56, no. 4, pp. 275-287, 2007.
  • N. Iqbal ve N. Iqbal, “Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications,” Mol. Biol. Int., vol. 2014, p. 852748, 2014.
  • S. Lamichhane, R. P. Rai, A. Khatri, R. Adhikari, B. G. Shrestha, ve S. K. Shrestha, “Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: An in-silico approach,” J. Biomol. Struct. Dyn., vol. 41, no. 3, pp. 897-911, 2023.
  • R. B. O. Ouma, S. M. Ngari, ve J. K. Kibet, “A review of the current trends in computational approaches in drug design and metabolism,” Discov. Public Health, vol. 21, p. 108, 2024.
  • P. C. Agu et al., “Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management,” Sci. Rep., vol. 13, no. 1, p. 13398, 2023. doi: 10.1038/s41598-023-40160-2
  • M. J. Frisch et al., Gaussian 03, Revision C.02, Gaussian, Inc., 2004.
  • C. Lee, W. Yang, ve R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, vol. 37, no. 2, pp. 785-789, 1988. doi: 10.1103/PhysRevB.37.785
  • A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648-5652, 1993. doi: 10.1063/1.464913
  • R. Dennington, T. Keith, ve J. Millam, GaussView, Version 5.0 [Computer software], Semichem Inc., 2009.
  • R. G. Parr, L. V. Szentpály, ve S. Liu, “Electrophilicity index,” J. Am. Chem. Soc., vol. 121, no. 9, pp. 1922-1924, 1999. doi: 10.1021/ja983494x
  • J. Tomasi, B. Mennucci, ve R. Cammi, “Quantum mechanical continuum solvation models,” Chem. Rev., vol. 105, no. 8, pp. 2999-3094, 2005. doi: 10.1021/cr9904009
  • M. J. Turner et al., CrystalExplorer17 (Version 17.5) [Computer software], University of Western Australia, 2017.
  • J. J. McKinnon, D. Jayatilaka, ve M. A. Spackman, “Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces,” Chem. Commun., no. 37, pp. 3814-3816, 2007. doi: 10.1039/B704980C
  • M. A. Spackman ve D. Jayatilaka, “Hirshfeld surface analysis,” CrystEngComm, vol. 11, no. 1, pp. 19-32, 2009. doi: 10.1039/B818330A
  • F. L. Hirshfeld, “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta, vol. 44, no. 2, pp. 129-138, 1977. doi: 10.1007/BF00549096
  • K. Aertgeerts et al., “Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein,” J. Biol. Chem., vol. 286, no. 21, pp. 18756-18765, 2011. doi: 10.1074/jbc.M110.206193
  • O. Trott ve A. J. Olson, “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading,” J. Comput. Chem., vol. 31, no. 2, pp. 455-461, 2010.
  • D. Biovia et al., Discovery Studio Visualizer (Version 17.2) [Computer software], Dassault Systèmes, 2016.
  • N. Karadayı, Ş. Çakmak, M. Odabaşoğlu, ve O. Büyükgüngör, “1,3-Bis(4-methylphenyl)triazene, 1-(4-chlorophenyl)-3-(4-fluorophenyl)triazene and 1-(4-fluorophenyl)-3-(4-methylphenyl)triazene,” Acta Crystallogr. Sect. E Struct. Rep. Online, vol. 61, no. 5, pp. o303-o305, 2005. doi: 10.1107/S0108270105004373
  • R. G. Parr ve W. Yang, Density-functional theory of atoms and molecules. Oxford University Press, 1989.
  • W. Koch ve M. C. Holthausen, A chemist’s guide to density functional theory, 2nd ed. Wiley-VCH, 2001.
  • Y. Zhao ve D. G. Truhlar, “Density functional theory for highly excited states: The role of exact exchange,” J. Chem. Phys., vol. 128, no. 18, p. 184103, 2008. doi: 10.1063/1.2928720
  • Y. Zhao, Y. Xie, ve H. F. Schaefer, “Benchmark studies of dipole moments and first hyperpolarizabilities of push-pull π-conjugated systems,” Theor. Chem. Acc., vol. 116, no. 1, pp. 131-137, 2006. doi: 10.1007/s00214-005-0023-6
  • W. Kohn ve L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133-A1138, 1965. doi: 10.1103/PhysRev.140.A1133
  • P. Politzer ve J. S. Murray, “The fundamental nature and role of the electrostatic potential in atoms and molecules,” Theor. Chem. Acc., vol. 108, no. 3, pp. 134-142, 2002. doi: 10.1007/s00214-002-0363-9
  • W. Yang ve R. G. Parr, “Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis,” Proc. Natl. Acad. Sci. U.S.A., vol. 82, no. 20, pp. 6723-6726, 1985. doi: 10.1073/pnas.82.20.6723
  • P. Geerlings, F. De Proft, ve W. Langenaeker, “Conceptual density functional theory,” Chem. Rev., vol. 103, no. 5, pp. 1793-1874, 2003. doi: 10.1021/cr990029p
  • R. G. Parr ve R. G. Pearson, “Absolute hardness: companion parameter to absolute electronegativity,” J. Am. Chem. Soc., vol. 105, no. 26, pp. 7512-7516, 1983. doi: 10.1021/ja00364a005
  • C. J. Cramer ve D. G. Truhlar, “Implicit solvation models: Equilibria, structure, spectra, and dynamics,” Chem. Rev., vol. 99, no. 8, pp. 2161-2200, 1999. doi: 10.1021/cr960149m
  • D. A. McQuarrie ve J. D. Simon, Physical chemistry: A molecular approach. University Science Books, 1999.
  • P. Atkins ve J. de Paula, Atkins’ physical chemistry, 10th ed. Oxford University Press, 2014.
  • K. S. Pitzer, E. R. Lippincott ve R. F. Curl, “The Thermodynamic Properties of Organic Compounds,” J. Am. Chem. Soc., vol. 67, no. 8, pp. 1341-1350, 1945. doi: 10.1021/ja01224a002
  • L. A. Curtiss, K. Raghavachari, P. C. Redfern ve J. A. Pople, “Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation,” J. Chem. Phys., vol. 106, no. 3, pp. 1063-1079, 1997. doi: 10.1063/1.473182
  • A. N. Khalilov et al., “Crystal structure and Hirshfeld surface analysis of (2E)-1-phenyl-3-(4-fluorophenyl)prop-2-en-1-one,” Acta Crystallogr. Sect. E: Crystallogr. Commun., vol. 78, no. 2, pp. 525-529, 2022. doi: 10.1107/S2056989022000343
  • C. Jelsch ve Y. B. M. Bisseyoub, “Deciphering the driving forces in crystal packing by analysis of intermolecular interactions in aromatic hydrocarbons,” IUCrJ, vol. 10, no. 5, pp. 557-567, 2023. doi: 10.1107/S2056989023005043
  • C. Bissantz, B. Kuhn ve M. Stahl, “A medicinal chemist’s guide to molecular interactions,” J. Med. Chem., vol. 53, no. 14, pp. 5061-5084, 2010. doi: 10.1021/jm100112j
  • S. Başak ve C. C. Ersanlı, “Structure elucidation of Schiff base-containing compound by quantum chemical methods,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 129-136, 2024. doi: 10.47897/bilmes.1553500
  • C. C. Ersanlı ve S. Başak, “Quantum Mechanical Calculations and Molecular Docking Simulation Studies of N-(5-chloro-2-oxobenzyl)-2-hydroxy-5-methylanilinium Compound,” Int. Sci. Vocat. Stud. J., vol. 8, no. 2, pp. 162-177, 2024. doi: 10.47897/bilmes.1573560
  • S. Öztürk, T. Aycan, Z. Demircioğlu ve C. C. Ersanlı, “Quantum Mechanical Calculations, Hirshfeld Surface Analysis, Molecular Docking, ADME and Toxicology Studies of the Ethyl 4-chloro-2-[(4-nitrophenyl)hydrazono]-3-oxobutrate Compound,” Int. Sci. Vocat. Stud. J., vol. 7, no. 2, pp. 109-121, 2023. doi: 10.47897/bilmes.1385170
  • D. B. Kitchen, H. Decornez, J. R. Furr ve J. Bajorath, “Docking and scoring in virtual screening for drug discovery: methods and applications,” Nat. Rev. Drug Discov., vol. 3, no. 11, pp. 935-949, 2004. doi: 10.1038/nrd1549
  • D. E. V. Wilman, “Triazenes as antitumor agents,” Med. Res. Rev., vol. 8, no. 1, pp. 1-20, 1988. doi: 10.1002/med.2610080102
  • C. N. Cavasotto ve A. J. W. Orry, “Ligand docking and structure-based virtual screening in drug discovery,” Curr. Top. Med. Chem., vol. 7, no. 10, pp. 1006-1014, 2007. doi: 10.2174/156802607780906468
There are 43 citations in total.

Details

Primary Language English
Subjects Condensed Matter Modelling and Density Functional Theory
Journal Section Research Article
Authors

Hilal Nur Yoğurtçu This is me 0009-0009-9762-5595

Cem Cüneyt Ersanlı 0000-0002-8113-5091

Publication Date June 30, 2025
Submission Date May 12, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Yoğurtçu, H. N., & Ersanlı, C. C. (2025). Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine. International Scientific and Vocational Studies Journal, 9(1), 130-144. https://doi.org/10.47897/bilmes.1697802
AMA Yoğurtçu HN, Ersanlı CC. Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine. ISVOS. June 2025;9(1):130-144. doi:10.47897/bilmes.1697802
Chicago Yoğurtçu, Hilal Nur, and Cem Cüneyt Ersanlı. “Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-Methylphenyl)triazine”. International Scientific and Vocational Studies Journal 9, no. 1 (June 2025): 130-44. https://doi.org/10.47897/bilmes.1697802.
EndNote Yoğurtçu HN, Ersanlı CC (June 1, 2025) Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine. International Scientific and Vocational Studies Journal 9 1 130–144.
IEEE H. N. Yoğurtçu and C. C. Ersanlı, “Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine”, ISVOS, vol. 9, no. 1, pp. 130–144, 2025, doi: 10.47897/bilmes.1697802.
ISNAD Yoğurtçu, Hilal Nur - Ersanlı, Cem Cüneyt. “Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-Methylphenyl)triazine”. International Scientific and Vocational Studies Journal 9/1 (June2025), 130-144. https://doi.org/10.47897/bilmes.1697802.
JAMA Yoğurtçu HN, Ersanlı CC. Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine. ISVOS. 2025;9:130–144.
MLA Yoğurtçu, Hilal Nur and Cem Cüneyt Ersanlı. “Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-Methylphenyl)triazine”. International Scientific and Vocational Studies Journal, vol. 9, no. 1, 2025, pp. 130-44, doi:10.47897/bilmes.1697802.
Vancouver Yoğurtçu HN, Ersanlı CC. Structural Parameters, NLO, HOMO, LUMO, MEP, Chemical Reactivity Descriptors, Mulliken-NPA, Thermodynamic Functions, Hirshfeld Surface Analysis and Molecular Docking of 1,3-Bis(4-methylphenyl)triazine. ISVOS. 2025;9(1):130-44.


Creative Commons Lisansı


Creative Commons Atıf 4.0 It is licensed under an International License