Research Article
BibTex RIS Cite

Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi

Year 2020, , 244 - 251, 15.12.2020
https://doi.org/10.46309/biodicon.2020.764145

Abstract

Kimyasal reaksiyonlarla sentezlenen nanopartiküllerin çeşitli omurgalılarda ve omurgasızlarda geniş bir toksisite yelpazesi sergilese de antifungal aktivitelerinden yararlanmak üzere büyük miktarlarda üretilmektedir. Klasik kimyasal yöntemlerin dikkat çekici dezavantajları nedeniyle, metalik nanopartiküllerin yeşil sentezi son yıllarda büyük ilgi görmeye başlamıştır. Bu yöntem düşük maliyetli, çevre dostu ve basit yaklaşımları ile klasik kimyasal yöntemlere bir alternatif olarak önerilmektedir. Bu çalışmada amacımız, gümüş nanopartiküllerin hücre dışı sentezinde Tilia rubra DC. ekstraktının uygunluğunu belirlemek ve elde edilen materyali karakterize etmektir. Bunun yanısıra biyosentezlenmiş gümüş nanopartiküllerinin antifungal etkisi değerlendirilmiştir. T. rubra ekstraktı, gümüş nanopartiküllerin biyosentezi için ilk kez çalışılmış olup UV-Vis spektrofotometresinde 427 nm'de yüzey plazmon rezonansı oluşturdu. Ayrıca geçirimli elektron mikroskop (TEM) görüntüleri nanopartiküllerin küresel morfolojiye sahip olduğunu gösterdi. TEM görüntülerine göre nanopartiküllerin boyutlarının 5-15 nm arasında olduğu bulundu. X-ışını kırınımı (XRD) analizi ise partiküllerin yüz merkezli kübik geometriye sahip kristal yapıda olduğunu belirledi. Gümüş iyonlarının biyo-indirgenmesinden sorumlu olası biyomolekülleri tanımlamak için Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi yapıldı. Biyosentezlenmiş gümüş nanopartiküllerin patojen bir maya olan Candida albicans üzerindeki antifungal etkisi agar difüzyon metodu ile incelendi ve sonuç olarak sentezlenen gümüş nanopartiküllerinin, Candida albicans üzerinde önemli inhibe edici etki gösterdi. Biyosentezlenmiş gümüş nanopartiküllerin çevre dostu sentez prosedürü gelecekte endüstriyel ve biyomedikal uygulamalar için kullanılma potansiyeline sahip olduğunu desteklemektedir.

Thanks

Bu çalışma Eskişehir Osmangazi Üniversitesi Merkez Araştırma Laboratuvarı Uygulama ve Araştırma Merkezi'nde (ARUM) çalışılmıştır.

References

  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., & Chopade, B. A. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in Colloid and Interface Science, 209, 40-48. https://doi.org/10.1016/j.cis.2013.12.011
  • Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of applied phycology, 27(5), 1861-1869. https://doi.org/10.1007/s10811-014-0492-2,
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2016). The assessment of biological accumulation on exposure in boron particles of Desmodesmus multivariabilis. Biological Diversity and Conservation, 9(3), 204-209.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2018). Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia, 71(1), 13-23.
  • Yilmaz-Ozturk, B., & Daglioglu, Y. (2018). The Ecotoxicological Effects Of ZnO-TiO2 Nanocomposite in Chodatodesmus mucranulatus. Feb-Fresenius Environmental Bulletin, 2951-2962.
  • Fatima, F., Bajpai, P., Pathak, N., Singh, S., Priya, S., & Verma, S. R. (2015). Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC microbiology, 15(1), 52. https://doi.org/10.1186/s12866-015-0391-y
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 611-621. https://doi.org/10.1007/s12210-019-00822-8
  • Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4, e2589. https://doi.org/10.7717/peerj.2589
  • Swaminathanályer, K. (2013). Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC advances, 3(4), 1009-1012. https://doi.org/10.1039/C2RA22402J
  • Govindarajan, M., Rajeswary, M., Muthukumaran, U., Hoti, S. L., Khater, H. F., & Benelli, G. (2016). Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. Journal of Photochemistry and Photobiology B: Biology, 161, 482-489. https://doi.org/10.1016/j.jphotobiol.2016.06.016
  • Demiray, S., Pintado, M. E., & Castro, P. M. L. (2009). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology, 54, 312-317.
  • Akyuz, E., Şahin, H., Islamoglu, F., Kolayli, S., & Sandra, P. (2014). Evaluation of phenolic compounds in Tilia rubra subsp. caucasica by HPLC-UV and HPLC-UV-MS/MS. International journal of food properties, 17(2), 331-343. https://doi.org/10.1080/10942912.2011.631252
  • Frezza, C., De Vita, D., Spinaci, G., Sarandrea, M., Venditti, A., & Bianco, A. (2020). Secondary metabolites of Tilia tomentosa Moench inflorescences collected in Central Italy: chemotaxonomy relevance and phytochemical rationale of traditional use. Natural product research, 34(8), 1167-1174. https://doi.org/10.1080/14786419.2018.1550487
  • Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. 2004. Method for antifungal disk diffusion susceptibility testing of yeasts: approved guideline. Document M44-A. Clinical and Laboratory Standards Institute, Wayne, PA https://doi.org/10.1128/JCM.01900-06
  • Jorgensen, J. H., Turnidge, J. D. 2015, Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, American Society of Microbiology, Eleventh Edition, 1253-1273. https://doi.org/10.1128/9781555817381.ch71
  • Wayne, P. A. (2004). Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a.
  • Khatami, M., & Pourseyedi, S. (2015). Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET nanobiotechnology, 9(4), 184-190. https://doi.org/10.1049/iet-nbt.2014.0052
  • Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. J. C. S. B. B. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50-56. https://doi.org/10.1016/j.colsurfb.2009.10.008
  • Prasad, T. N., Kambala, V. S. R., & Naidu, R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of applied phycology, 25(1), 177-182. https://doi.org/10.1007/s10811-012-9851-z
  • Khatami, M., Mortazavi, S. M., Kishani-Farahani, Z., Amini, A., Amini, E., & Heli, H. (2017). Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iranian journal of biotechnology, 15(2), 95 https://doi.org/10.15171/ijb.1436
  • Vanaja, M., Gnanajobitha, G., Paulkumar, K., Rajeshkumar, S., Malarkodi, C., & Annadurai, G. (2013). Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. Journal of Nanostructure in Chemistry, 3(1), 17. https://doi.org/10.1186/2193-8865-3-17
  • Raghunandan, D., Bedre, M. D., Basavaraja, S., Sawle, B., Manjunath, S. Y., & Venkataraman, A. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces B: Biointerfaces, 79(1), 235-240. https://doi.org/10.1016/j.colsurfb.2010.04.003
  • Giordano, M., Kansiz, M., Heraud, P., Beardall, J., Wood, B., & McNaughton, D. (2001). Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). Journal of Phycology, 37(2), 271-279. https://doi.org/10.1046/j.1529-8817.2001.037002271.x
  • Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2014). Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 164-172. https://doi.org/10.1016/j.saa.2013.10.077
  • Öztürk, B. Y. (2019). Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects. Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics, 72(1), 29-43.
  • Uddin, A. R., Siddique, M. A. B., Rahman, F., Ullah, A. A., & Khan, R. (2020). Cocos nucifera Leaf Extract Mediated Green Synthesis of Silver Nanoparticles for Enhanced Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 1-12.
  • Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., Tzou, D. Y., & Liu, S. T. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PloS one, 10(12), e0144306. https://doi.org/10.1371/journal.pone.0144306
  • Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219. https://doi.org/10.1016/j.procbio.2019.10.027
  • Gole, A., Dash, C., Ramakrishnan, V., Sainkar, S. R., Mandale, A. B., Rao, M., & Sastry, M. (2001). Pepsin− gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir, 17(5), 1674-1679. https://doi.org/10.1021/la001164w
  • Jaidev, L. R., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and surfaces B: Biointerfaces, 81(2), 430-433. https://doi.org/10.1016/j.colsurfb.2010.07.033
  • Ghojavand, S., Madani, M., & Karimi, J. (2020). Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of felty germander. Journal of Inorganic and Organometallic Polymers and Materials, 1-11. https://doi.org/10.1007/s10904-020-01449-1
Year 2020, , 244 - 251, 15.12.2020
https://doi.org/10.46309/biodicon.2020.764145

Abstract

References

  • Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), 257-262. https://doi.org/10.1016/j.nano.2009.07.002
  • Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., & Chopade, B. A. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in Colloid and Interface Science, 209, 40-48. https://doi.org/10.1016/j.cis.2013.12.011
  • Subramaniyam, V., Subashchandrabose, S. R., Thavamani, P., Megharaj, M., Chen, Z., & Naidu, R. (2015). Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of applied phycology, 27(5), 1861-1869. https://doi.org/10.1007/s10811-014-0492-2,
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2016). The assessment of biological accumulation on exposure in boron particles of Desmodesmus multivariabilis. Biological Diversity and Conservation, 9(3), 204-209.
  • Dağlıoğlu, Y., & Yılmaz Öztürk, B. (2018). Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis). Caryologia, 71(1), 13-23.
  • Yilmaz-Ozturk, B., & Daglioglu, Y. (2018). The Ecotoxicological Effects Of ZnO-TiO2 Nanocomposite in Chodatodesmus mucranulatus. Feb-Fresenius Environmental Bulletin, 2951-2962.
  • Fatima, F., Bajpai, P., Pathak, N., Singh, S., Priya, S., & Verma, S. R. (2015). Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC microbiology, 15(1), 52. https://doi.org/10.1186/s12866-015-0391-y
  • Dağlıoğlu, Y., & Öztürk, B. Y. (2019). A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp.(Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 30(3), 611-621. https://doi.org/10.1007/s12210-019-00822-8
  • Tippayawat, P., Phromviyo, N., Boueroy, P., & Chompoosor, A. (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ, 4, e2589. https://doi.org/10.7717/peerj.2589
  • Swaminathanályer, K. (2013). Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC advances, 3(4), 1009-1012. https://doi.org/10.1039/C2RA22402J
  • Govindarajan, M., Rajeswary, M., Muthukumaran, U., Hoti, S. L., Khater, H. F., & Benelli, G. (2016). Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. Journal of Photochemistry and Photobiology B: Biology, 161, 482-489. https://doi.org/10.1016/j.jphotobiol.2016.06.016
  • Demiray, S., Pintado, M. E., & Castro, P. M. L. (2009). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology, 54, 312-317.
  • Akyuz, E., Şahin, H., Islamoglu, F., Kolayli, S., & Sandra, P. (2014). Evaluation of phenolic compounds in Tilia rubra subsp. caucasica by HPLC-UV and HPLC-UV-MS/MS. International journal of food properties, 17(2), 331-343. https://doi.org/10.1080/10942912.2011.631252
  • Frezza, C., De Vita, D., Spinaci, G., Sarandrea, M., Venditti, A., & Bianco, A. (2020). Secondary metabolites of Tilia tomentosa Moench inflorescences collected in Central Italy: chemotaxonomy relevance and phytochemical rationale of traditional use. Natural product research, 34(8), 1167-1174. https://doi.org/10.1080/14786419.2018.1550487
  • Clinical and Laboratory Standards Institute/National Committee for Clinical Laboratory Standards. 2004. Method for antifungal disk diffusion susceptibility testing of yeasts: approved guideline. Document M44-A. Clinical and Laboratory Standards Institute, Wayne, PA https://doi.org/10.1128/JCM.01900-06
  • Jorgensen, J. H., Turnidge, J. D. 2015, Susceptibility test methods: dilution and disk diffusion methods. In Manual of Clinical Microbiology, American Society of Microbiology, Eleventh Edition, 1253-1273. https://doi.org/10.1128/9781555817381.ch71
  • Wayne, P. A. (2004). Method for antifungal disk diffusion susceptibility testing of yeasts. CLSI m44-a.
  • Khatami, M., & Pourseyedi, S. (2015). Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET nanobiotechnology, 9(4), 184-190. https://doi.org/10.1049/iet-nbt.2014.0052
  • Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T., & Mohan, N. J. C. S. B. B. (2010). Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces, 76(1), 50-56. https://doi.org/10.1016/j.colsurfb.2009.10.008
  • Prasad, T. N., Kambala, V. S. R., & Naidu, R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. Journal of applied phycology, 25(1), 177-182. https://doi.org/10.1007/s10811-012-9851-z
  • Khatami, M., Mortazavi, S. M., Kishani-Farahani, Z., Amini, A., Amini, E., & Heli, H. (2017). Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iranian journal of biotechnology, 15(2), 95 https://doi.org/10.15171/ijb.1436
  • Vanaja, M., Gnanajobitha, G., Paulkumar, K., Rajeshkumar, S., Malarkodi, C., & Annadurai, G. (2013). Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. Journal of Nanostructure in Chemistry, 3(1), 17. https://doi.org/10.1186/2193-8865-3-17
  • Raghunandan, D., Bedre, M. D., Basavaraja, S., Sawle, B., Manjunath, S. Y., & Venkataraman, A. (2010). Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces B: Biointerfaces, 79(1), 235-240. https://doi.org/10.1016/j.colsurfb.2010.04.003
  • Giordano, M., Kansiz, M., Heraud, P., Beardall, J., Wood, B., & McNaughton, D. (2001). Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). Journal of Phycology, 37(2), 271-279. https://doi.org/10.1046/j.1529-8817.2001.037002271.x
  • Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2014). Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 164-172. https://doi.org/10.1016/j.saa.2013.10.077
  • Öztürk, B. Y. (2019). Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: their Antibacterial and antifungal effects. Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics, 72(1), 29-43.
  • Uddin, A. R., Siddique, M. A. B., Rahman, F., Ullah, A. A., & Khan, R. (2020). Cocos nucifera Leaf Extract Mediated Green Synthesis of Silver Nanoparticles for Enhanced Antibacterial Activity. Journal of Inorganic and Organometallic Polymers and Materials, 1-12.
  • Hsueh, Y. H., Lin, K. S., Ke, W. J., Hsieh, C. T., Chiang, C. L., Tzou, D. Y., & Liu, S. T. (2015). The antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ions. PloS one, 10(12), e0144306. https://doi.org/10.1371/journal.pone.0144306
  • Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208-219. https://doi.org/10.1016/j.procbio.2019.10.027
  • Gole, A., Dash, C., Ramakrishnan, V., Sainkar, S. R., Mandale, A. B., Rao, M., & Sastry, M. (2001). Pepsin− gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir, 17(5), 1674-1679. https://doi.org/10.1021/la001164w
  • Jaidev, L. R., & Narasimha, G. (2010). Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids and surfaces B: Biointerfaces, 81(2), 430-433. https://doi.org/10.1016/j.colsurfb.2010.07.033
  • Ghojavand, S., Madani, M., & Karimi, J. (2020). Green synthesis, characterization and antifungal activity of silver nanoparticles using stems and flowers of felty germander. Journal of Inorganic and Organometallic Polymers and Materials, 1-11. https://doi.org/10.1007/s10904-020-01449-1
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Betül Yılmaz Öztürk 0000-0002-1817-8240

Derviş Öztürk 0000-0001-7189-7407

Publication Date December 15, 2020
Submission Date July 4, 2020
Acceptance Date October 26, 2020
Published in Issue Year 2020

Cite

APA Yılmaz Öztürk, B., & Öztürk, D. (2020). Tilia rubra DC. ekstraktı kullanılarak gümüş nanopartikülün hücre dışı biyosentezi ve antifungal aktivitesi. Biological Diversity and Conservation, 13(3), 244-251. https://doi.org/10.46309/biodicon.2020.764145

❖  Abstracted-Indexed in
Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic, Medical Reads (RRS), CrossRef;10.46309/biodicon.

❖ Libraries
Aberystwyth University; All libraries; Bath University; Birmingham University; Cardiff University; City University London; CONSER (Not UK Holdings); Edinburgh University; Essex University; Exeter University; Eskişehir Technical University Library; EZB Electronic Journals Library; Feng Chia University Library; GAZİ Gazi University Library; Glasgow University; HEC-National Digital Library; Hull University; Imperial College London; Kaohsinug Medical University Library; ANKOS; Anadolu University Library; Lancaster University; Libros PDF; Liverpool University; London Metropolitan University; London School of Economics and Political Science; Manchester University; National Cheng Kung University Library; National ILAN University Library; Nottingham University; Open University; Oxford University; Queen Mary,University of London;Robert Gordon University; Royal Botanic Gardens, Kew; Sheffield Hallam University; Sheffield University; Shih Hsin University Library; Smithsonian Institution Libraries; Southampton University; Stirling University; Strathclyde University; Sussex University; The National Agricultural Library (NAL); The Ohio Library and Information NetWork; Trinity College Dublin; University of Washington Libraries; Vaughan Memorial Library; York University..

❖ The article processing is free.

❖ Web of Science {Additional Web of Science Indexes: Zoological Records Indexed] Clavariate Analytic
❖ This journal is a CrossRef;10.46309/biodicon. member

❖ Please visit ” http:// www.biodicon.com“ ; "https://dergipark.org.tr/en/pub/biodicon"   for instructions about articles and all of the details about journal


❖  Correspondance Adres: Prof. Ersin YÜCEL, Sazova Mahallesi, Ziraat Caddesi, No.277 F Blok, 26005 Tepebaşı-Eskişehir/Türkiye
E-posta / E-mail: biodicon@gmail.com;
Web Address: http://www.biodicon.com;   https://dergipark.org.tr/en/pub/biodicon
❖ Biological Diversity and Conservation/ Biyolojik Çeşitlilik ve Koruma
❖ ISSN 1308-5301 Print; ISSN 1308-8084 Online
❖ Start Date Published 2008
© Copyright by Biological Diversity and Conservation/Biyolojik Çeşitlilik ve Koruma-Available online at www.biodicon.com/All rights reserved
Publisher : ERSİN YÜCEL (https://www.ersinyucel.com.tr/)
❖ This journal is published three numbers in a year. Printed in Eskişehir/Türkiye.
❖ All sorts of responsibilities of the articles published in this journal are belonging to the authors
Editör / Editor-In-Chief : Prof.Dr. Ersin YÜCEL, https://orcid.org/0000-0001-8274-7578