Research Article
BibTex RIS Cite
Year 2025, Volume: 34 Issue: 1, 1 - 21
https://doi.org/10.38042/biotechstudies.1615601

Abstract

Project Number

FKB-2020–10551

References

  • Agirman, B., Settanni, L., & Erten, H. (2021). Effect of different mineral salt mixtures and dough extraction procedure on the physical, chemical and microbiological composition of Salgam: A black carrot fermented beverage. Food Chem, 344, 128618. https://doi.org/10.1016/j.foodchem.2020.128618
  • Agolino, G., Pino, A., Vaccalluzzo, A., Cristofolini, M., Solieri, L., Caggia, C., & Randazzo, C. L. (2024). Bile salt hydrolase: The complexity behind its mechanism in relation to lowering-cholesterol lactobacilli probiotics. Journal of Functional Foods, 120, 106357.
  • Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402
  • Arena, M., Fiocco, D., Massa, S., Capozzi, V., Russo, P., & Spano, G. (2014). Lactobacillus plantarum as a strategy for an in situ production of vitamin B2. Journal of Food and Nutritional Disorders, 1(4), S1-004.
  • Arias, C. A., Panesso, D., McGrath, D. M., Qin, X., Mojica, M. F., Miller, C., Diaz, L., Tran, T. T., Rincon, S., Barbu, E. M., Reyes, J., Roh, J. H., Lobos, E., Sodergren, E., Pasqualini, R., Arap, W., Quinn, J. P., Shamoo, Y., Murray, B. E., & Weinstock, G. M. (2011). Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med, 365(10), 892-900. https://doi.org/10.1056/NEJMoa1011138
  • Behera, S. S., El Sheikha, A. F., Hammami, R., & Kumar, A. (2020). Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? Journal of Functional Foods, 70, 103971.
  • Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res, 51(W1), W46-W50. https://doi.org/10.1093/nar/gkad344
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  • Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., 3rd, Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep, 5, 8365. https://doi.org/10.1038/srep08365
  • Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assuncao, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carriere, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., . . . Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 14(4), 991-1014. https://doi.org/10.1038/s41596-018-0119-1
  • Buron-Moles, G., Chailyan, A., Dolejs, I., Forster, J., & Miks, M. H. (2019). Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol, 103(7), 3135-3152. https://doi.org/10.1007/s00253-019-09701-6
  • Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C., & O'Toole, P. W. (2019). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl Environ Microbiol, 85(1). https://doi.org/10.1128/AEM.01738-18
  • Chaffanel, F., Charron-Bourgoin, F., Soligot, C., Kebouchi, M., Bertin, S., Payot, S., Le Roux, Y., & Leblond-Bourget, N. (2018). Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol, 102(6), 2851-2865. https://doi.org/10.1007/s00253-018-8794-y
  • Choi, S., Jin, G. D., Park, J., You, I., & Kim, E. B. (2018). Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association. J Microbiol Biotechnol, 28(8), 1352-1359.https://doi.org/10.4014/jmb.1803.03029
  • Costa, M. G., Ooki, G. N., Vieira, A. D., Bedani, R., & Saad, S. M. (2017). Synbiotic Amazonian palm berry (acai, Euterpe oleracea Mart.) ice cream improved Lactobacillus rhamnosus GG survival to simulated gastrointestinal stress. Food Funct, 8(2), 731-740. https://doi.org/10.1039/c6fo00778c
  • Czumaj, A., Szrok-Jurga, S., Hebanowska, A., Turyn, J., Swierczynski, J., Sledzinski, T., & Stelmanska, E. (2020). The Pathophysiological Role of CoA. Int J Mol Sci, 21(23). https://doi.org/10.3390/ijms21239057
  • D'Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., & Kost, C. (2018). Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep, 35(5), 455-488, https://doi.org/10.1039/c8np00009c
  • Darmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion Properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336
  • Das, D. J., Shankar, A., Johnson, J. B., & Thomas, S. (2020). Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition, 69, 110567.
  • De Souza, B. M. S., Borgonovi, T. F., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Lactobacillus casei and Lactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions. Probiotics Antimicrob Proteins, 11(2), 382-396. https://doi.org/10.1007/s12602-018-9406-y
  • Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol, 31(6), 438-442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
  • Delany, I., Sheehan, M. M., Fenton, A., Bardin, S., Aarons, S., & O'Gara, F. (2000). Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology (Reading), 146 ( Pt 2), 537-546. https://doi.org/10.1099/00221287-146-2-537
  • Dereeper, A., Summo, M., & Meyer, D. F. (2022). PanExplorer: a web-based tool for exploratory analysis and visualization of bacterial pan-genomes. Bioinformatics, 38(18), 4412-4414. https://doi.org/10.1093/bioinformatics/btac504
  • Desguin, B., Goffin, P., Viaene, E., Kleerebezem, M., Martin-Diaconescu, V., Maroney, M. J., Declercq, J. P., Soumillion, P., & Hols, P. (2014). Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat Commun, 5, 3615. https://doi.org/10.1038/ncomms4615
  • Douthwaite, S., Jakobsen, L., Yoshizawa, S., & Fourmy, D. (2008). Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. J Mol Biol, 378(5), 969-975. https://doi.org/10.1016/j.jmb.2008.03.024
  • Duar, R. M., Lin, X. B., Zheng, J., Martino, M. E., Grenier, T., Perez-Munoz, M. E., Leulier, F., Ganzle, M., & Walter, J. (2017). Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev, 41(Supp_1), S27-S48. https://doi.org/10.1093/femsre/fux030
  • Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metab, 25(1), 27-42. https://doi.org/10.1016/j.cmet.2016.08.009
  • Ekinci, F. Y., Baser, G. M., Özcan, E., Üstündağ, Ö. G., Korachi, M., Sofu, A., Blumberg, J. B., & Chen, C.-Y. O. (2016). Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. European Food Research and Technology, 242, 1355-1368.
  • Erginkaya, Z., & Turhan, E. Ü. (2016). Enumeration and identification of dominant microflora during the fermentation of Shalgam. Akademik Gıda, 14(2), 92-97.
  • Evanovich, E., de Souza Mendonca Mattos, P. J., & Guerreiro, J. F. (2019). Comparative Genomic Analysis of Lactobacillus plantarum: An Overview. Int J Genomics, 2019, 4973214. https://doi.org/10.1155/2019/4973214
  • Fatemizadeh, S. S., Krych, L., Castro-Mejia, J. L., Stefanova, D. V., Kot, W., Habibi Najafi, M. B., & Nielsen, D. S. (2023). Complete Genome Sequences of Three Lactiplantibacillus plantarum Strains Isolated from Traditional Iranian Raw Milk Motal Cheese. Microbiol Resour Announc, 12(1), e0047922. https://doi.org/10.1128/mra.00479-22
  • Fidanza, M., Panigrahi, P., & Kollmann, T. R. (2021). Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol, 12, 712236. https://doi.org/10.3389/fmicb.2021.712236
  • Fiocco, D., Capozzi, V., Collins, M., Gallone, A., Hols, P., Guzzo, J., Weidmann, S., Rieu, A., Msadek, T., & Spano, G. (2010). Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol, 192(3), 896-900. https://doi.org/10.1128/JB.01122-09
  • Florez, A. B., Delgado, S., & Mayo, B. (2005). Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol, 51(1), 51-58. https://doi.org/10.1139/w04-114
  • Friedman, L., Alder, J. D., & Silverman, J. A. (2006). Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother, 50(6), 2137-2145. https://doi.org/10.1128/AAC.00039-06
  • Ganzle, M. G., & Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol, 3, 340. https://doi.org/10.3389/fmicb.2012.00340
  • Gao, Y., Liu, Y., Sun, M., Zhang, H., Mu, G., & Tuo, Y. (2020). Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. Journal of dairy science, 103(7), 5916-5930.
  • Goel, A., Halami, P. M., & Tamang, J. P. (2020). Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes. Front Microbiol, 11, 40. https://doi.org/10.3389/fmicb.2020.00040
  • Groth, A. C., Olivares, E. C., Thyagarajan, B., & Calos, M. P. (2000). A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A, 97(11),5995-6000. https://doi.org/10.1073/pnas.090527097
  • Guo, L., Yang, L.-J., & Huo, G.-C. (2011). Cholesterol removal by Lactobacillus plantarum isolated from homemade fermented cream in Inner Mongolia of China. Czech Journal of Food Sciences, 29(3), 219-225.
  • Haddaji, N., Mahdhi, A. K., Krifi, B., Ismail, M. B., & Bakhrouf, A. (2015). Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS microbiology letters, 362(9), fnv047. Heath, R. J., & Rock, C. O. (2000). A triclosan-resistant bacterial enzyme. Nature, 406(6792), 145-146. mhttps://doi.org/10.1038/35018162
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res, 47(D1),D309-D314. https://doi.org/10.1093/nar/gky1085
  • Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun,9(1),5114. https://doi.org/10.1038/s41467-018-07641-9
  • Juhas, M., van der Meer, J.R., Gaillard, M., Harding, R.M., Hood, W.H., Crook, D.W. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews, Volume 33, Issue 2, Pages 376–393. https://doi.org/10.1111/j.1574-6976.2008.00136.x.
  • Kandasamy, S., Yoo, J., Yun, J., Lee, K. H., Kang, H. B., Kim, J. E., Oh, M. H., & Ham, J. S. (2022). Probiogenomic In-Silico Analysis and Safety Assessment of Lactiplantibacillus plantarum DJF10 Strain Isolated from Korean Raw Milk. Int J Mol Sci, 23(22). https://doi.org/10.3390/ijms232214494
  • Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol, 428(4), 726-731. https://doi.org/10.1016/j.jmb.2015.11.006
  • Kesmen, Z., Yetiman, A. E., Gulluce, A., Kacmaz, N., Sagdic, O., Cetin, B., Adiguzel, A., Sahin, F., & Yetim, H. (2012). Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Int J Food Microbiol, 153(3), 428-435. https://doi.org/10.1016/j.ijfoodmicro.2011.12.008
  • Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W., Stiekema, W., Lankhorst, R. M., Bron, P. A., Hoffer, S. M., Groot, M. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A, 100(4), 1990-1995. https://doi.org/10.1073/pnas.0337704100
  • Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4), 100.
  • Laiño, J. E., Zelaya, H., del Valle, M. J., de Giori, G. S., & LeBlanc, J. G. (2015). Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. Journal of Functional Foods, 17, 22-32.
  • Lang, H. P., Cogdell, R. J., Gardiner, A. T., & Hunter, C. N. (1994). Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. J Bacteriol, 176(13), 3859-3869. https://doi.org/10.1128/jb.176.13.3859-3869.1994
  • Lau, L. Y. J., & Quek, S. Y. (2024). Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. Food Bioengineering, 3(1), 41-64. Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M. C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol, 66(12), 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
  • Lessard, I. A., & Walsh, C. T. (1999). VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc Natl Acad Sci U S A, 96(20), 11028-11032. https://doi.org/10.1073/pnas.96.20.11028
  • Li, P., Zhou, Q., & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. J Biotechnol, 234, 66-70. https://doi.org/10.1016/j.jbiotec.2016.07.020
  • Li, Z., Song, Q., Wang, M., Ren, J., Liu, S., & Zhao, S. (2021). Comparative genomics analysis of Pediococcus acidilactici species. J Microbiol, 59(6), 573-583. https://doi.org/10.1007/s12275-021-0618-6
  • Liu, C. J., Wang, R., Gong, F. M., Liu, X. F., Zheng, H. J., Luo, Y. Y., & Li, X. R. (2015). Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean. Genomics, 106(6), 404-411. https://doi.org/10.1016/j.ygeno.2015.07.007
  • Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic Biol Med, 66, 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
  • Martino, M. E., Bayjanov, J. R., Caffrey, B. E., Wels, M., Joncour, P., Hughes, S., Gillet, B., Kleerebezem, M., van Hijum, S. A., & Leulier, F. (2016). Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol, 18(12), 4974-4989. https://doi.org/10.1111/1462-2920.13455
  • Mishra, V., & Prasad, D. N. (2005). Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol, 103(1), 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  • Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O'Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res, 15(3), 151-161. https://doi.org/10.1093/dnares/dsn009
  • Mosquera-Rendon, J., Rada-Bravo, A. M., Cardenas-Brito, S., Corredor, M., Restrepo-Pineda, E., & Benitez-Paez, A. (2016). Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics, 17, 45. https://doi.org/10.1186/s12864-016-2364-4
  • Nazir, A., Xu, X., Liu, Y., Chen, Y. (2023). Phage Endolysins: Advances in the World of Food Safety. Cells, 12, 2169. https://doi.org/10.3390/cells12172169.
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., & Ochi, K. (2007). Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol, 63(4), 1096-1106. https://doi.org/10.1111/j.1365-2958.2006.05585.x
  • Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E. J., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., Olsen, G. J., . . . Stevens, R. L. (2023). Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res, 51(D1), D678-D689. https://doi.org/10.1093/nar/gkac1003
  • Olukoya, D., Ebigwei, S., Adebawo, O., & Osiyemi, F. (1993). Plasmid profiles and antibiotic susceptibility patterns of Lactobacillus isolated from fermented foods in Nigeria. Food microbiology, 10(4), 279-285.
  • Ozturk, G., Yetiman, A. E., & Dogan, M. (2019). The bioactive efficiency of ultrasonic extracts from acorn leaves and green walnut husks against Bacillus cereus: a hybrid approach to PCA with the Taguchi method. Journal of Food Measurement and Characterization, 13, 1257-1268.
  • Pan, M., Kumaree, K. K., & Shah, N. P. (2017). Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics. J Food Sci, 82(3), 744-750. https://doi.org/10.1111/1750-3841.13608
  • Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J, 3, e201210003. https://doi.org/10.5936/csbj.201210003
  • Parente, E., Ciocia, F., Ricciardi, A., Zotta, T., Felis, G. E., & Torriani, S. (2010). Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. Int J Food Microbiol, 144(2), 270-279. https://doi.org/10.1016/j.ijfoodmicro.2010.10.005
  • Peleg, A. Y., Miyakis, S., Ward, D. V., Earl, A. M., Rubio, A., Cameron, D. R., Pillai, S., Moellering, R. C., Jr., & Eliopoulos, G. M. (2012). Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One, 7(1), e28316. https://doi.org/10.1371/journal.pone.0028316
  • Perrin, A., & Rocha, E. P. C. (2021). PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genom Bioinform, 3(1), lqaa106. https://doi.org/10.1093/nargab/lqaa106
  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102
  • Qiao, N., Wittouck, S., Mattarelli, P., Zheng, J., Lebeer, S., Felis, G. E., & Ganzle, M. G. (2022). After the storm-Perspectives on the taxonomy of Lactobacillaceae. JDS Commun, 3(3), 222-227. https://doi.org/10.3168/jdsc.2021-0183
  • R-Core-Team. (2021). R: A language and environment for statistical computing [computer software]. Vienna, Austria: R Foundation for Statistical Computing. Rajoka, M. S. R., Mehwish, H. M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., & Shi, J. (2017). Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT, 84, 271-280.
  • Ranadheera, R., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food research international, 43(1), 1-7.
  • Rudel, L. L., & Morris, M. D. (1973). Determination of cholesterol using o-phthalaldehyde. J Lipid Res, 14(3), 364-366. https://www.ncbi.nlm.nih.gov/pubmed/14580182
  • Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. (2017). Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol, 247, 48-54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
  • Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob Proteins, 9(2), 111-122. https://doi.org/10.1007/s12602-017-9264-z
  • Sharifi-Rad, J., Rodrigues, C. F., Stojanovic-Radic, Z., Dimitrijevic, M., Aleksic, A., Neffe-Skocinska, K., Zielinska, D., Kolozyn-Krajewska, D., Salehi, B., Milton Prabu, S., Schutz, F., Docea, A. O., Martins, N., & Calina, D. (2020). Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina (Kaunas), 56(9). https://doi.org/10.3390/medicina56090433
  • Singh, S., Dhankar, N., Garg, A.K., Molugulu, N., Kesharwani, P. (2020). Tuberculosis: introduction, drug regimens, and multidrug-resistance. In P. Kesharwani (Ed.), Nanotechnology Based Approaches for Tuberculosis Treatment (pp 27-36). Academic Press.
  • Snipen, L., & Liland, K. H. (2015). micropan: an R-package for microbial pan-genomics. BMC Bioinformatics, 16, 79. https://doi.org/10.1186/s12859-015-0517-0
  • Song, M., Yun, B., Moon, J. H., Park, D. J., Lim, K., & Oh, S. (2015). Characterization of Selected Lactobacillus Strains for Use as Probiotics. Korean J Food Sci Anim Resour, 35(4), 551-556. https://doi.org/10.5851/kosfa.2015.35.4.551
  • Stogios, P. J., & Savchenko, A. (2020). Molecular mechanisms of vancomycin resistance. Protein Science, 29(3), 654-669.
  • Tanguler, H., Cankaya, A., Agcam, E., & Uslu, H. (2021). Effect of temperature and production method on some quality parameters of fermented carrot juice (Shalgam). Food Bioscience, 41, 100973.
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT-Food Science and Technology, 46(1), 36-41.
  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res, 44(14), 6614-6624. https://doi.org/10.1093/nar/gkw569
  • Tettelin, H., Riley, D., Cattuto, C., & Medini, D. (2008). Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol, 11(5), 472-477. https://doi.org/10.1016/j.mib.2008.09.006
  • Thompson, H. O., Onning, G., Holmgren, K., Strandler, H. S., & Hultberg, M. (2020). Fermentation of Cauliflower and White Beans with Lactobacillus plantarum - Impact on Levels of Riboflavin, Folate, Vitamin B(12), and Amino Acid Composition. Plant Foods Hum Nutr, 75(2), 236-242. https://doi.org/10.1007/s11130-020-00806-2
  • von Wright, A. (2005). Regulating the safety of probiotics--the European approach. Curr Pharm Des, 11(1), 17-23. https://doi.org/10.2174/1381612053382322
  • Wang, Lu, C., Xu, Q., Li, Z., Song, Y., Zhou, S., Guo, L., Zhang, T., & Luo, X. (2022). Comparative Genomics Analysis Provides New Insights into High Ethanol Tolerance of Lactiplantibacillus pentosus LTJ12, a Novel Strain Isolated from Chinese Baijiu. Foods, 12(1). https://doi.org/10.3390/foods12010035
  • Wang, B., Zhao, A., Novick, R. P., & Muir, T. W. (2015). Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc Natl Acad Sci U S A, 112(34), 10679-10684. https://doi.org/10.1073/pnas.1506030112
  • Wang, G., Zhang, M., Zhao, J., Xia, Y., Lai, P. F., & Ai, L. (2018). A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells. Front Microbiol, 9, 2858. https://doi.org/10.3389/fmicb.2018.02858
  • Wang, Y., Dong, J., Wang, J., Chi, W., Zhou, W., Tian, Q., Hong, Y., Zhou, X., Ye, H., Tian, X., Hu, R., & Wong, A. (2022). Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol, 14(1), 2019992. https://doi.org/10.1080/20002297.2021.2019992
  • Wang, Y., Liang, Q., Lu, B., Shen, H., Liu, S., Shi, Y., Leptihn, S., Li, H., Wei, J., Liu, C., Xiao, H., Zheng, X., Liu, C., & Chen, H. (2021). Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genomics, 22(1), 210. https://doi.org/10.1186/s12864-021-07539-9
  • Wang, Z., Song, L., Huang, Y., Wang, S., & Ren, Z. (2014). Inhibitory effect of Lactobacillus plantarum DOMLa on inflammatory response induced by Vibrio vulnificus.
  • Wilson, J. M., Fitschen, P. J., Campbell, B., Wilson, G. J., Zanchi, N., Taylor, L., Wilborn, C., Kalman, D. S., Stout, J. R., Hoffman, J. R., Ziegenfuss, T. N., Lopez, H. L., Kreider, R. B., Smith-Ryan, A. E., & Antonio, J. (2013). International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr, 10(1), 6. https://doi.org/10.1186/1550-2783-10-6
  • Wishart, D. S., Han, S., Saha, S., Oler, E., Peters, H., Grant, J. R., Stothard, P., & Gautam, V. (2023). PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res, 51(W1), W443-W450. https://doi.org/10.1093/nar/gkad382
  • Xenophontos, C., Taubert, M., Harpole, W. S., & Kusel, K. (2021). Phylogenetic and metabolic diversity have contrasting effects on the ecological functioning of bacterial communities. FEMS Microbiol Ecol, 97(3). https://doi.org/10.1093/femsec/fiab017
  • Yang, S. J., Xiong, Y. Q., Dunman, P. M., Schrenzel, J., Francois, P., Peschel, A., & Bayer, A. S. (2009). Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother, 53(6), 2636-2637. https://doi.org/10.1128/AAC.01415-08
  • Yetiman, A., Horzum, M., Bahar, D., & Akbulut, M. (2024). Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on "In Silico" and "In Vitro" Approaches. Probiotics Antimicrob Proteins, 16(2), 334-351. https://doi.org/10.1007/s12602-022-10038-2
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101499
  • Zhang, S., Liu, R., Ma, Y., Ma, Y., Feng, H., Ding, X., Zhang, Q., Li, Y., Shan, J., Bian, H., Zhu, R., & Meng, Q. (2024). Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion. J Agric Food Chem, 72(12), 6236-6249. https://doi.org/10.1021/acs.jafc.3c08232
  • Zhang, Z. Y., Liu, C., Zhu, Y. Z., Wei, Y. X., Tian, F., Zhao, G. P., & Guo, X. K. (2012). Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol, 153(1-2), 166-170. https://doi.org/10.1016/j.ijfoodmicro.2011.11.003
  • Zhao, K., Qiu, L., Tao, X., Zhang, Z., & Wei, H. (2024). Genome Analysis for Cholesterol-Lowing Action and Bacteriocin Production of Lactiplantibacillus plantarum WLPL21 and ZDY04 from Traditional Chinese Fermented Foods. Microorganisms, 12(1). https://doi.org/10.3390/microorganisms12010181
  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Ganzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107

Pangenome analysis and “in silico” overview of carbohydrate and vitamin metabolism of Lactiplantibacillus plantarum strain TRA56 obtained from lactic-acid fermented beverage known as Shalgam

Year 2025, Volume: 34 Issue: 1, 1 - 21
https://doi.org/10.38042/biotechstudies.1615601

Abstract

Lactiplantibacillus plantarum is a highly adaptable and versatile species that can be found in a diverse range of niches. It can generate bioactive compounds, including riboflavin, folic acid, and exopolysaccharides, which contribute to the functional qualities of fermented foods. This study aimed to provide a brief evaluation of the overall genetic characteristics, as well as the carbohydrate and vitamin metabolisms, of the Lb. plantarum TRA56 (The TRA56). Its genome size was 3,242,215 bp with a 44.41% GC content, including 3.030 coding sequences, 62 tRNA genes, 3 rRNA, 4 ncRNA, 1 CRISPR array, 69 pseudogenes, and 2 intact phages. Its genome had 195 singleton genes that differed from those found in other strains analyzed in the pangenome. Moreover, it has been found that TRA56 possesses a facultative heterofermentive carbohydrate metabolism as a result of the existence of 6-phosphofructokinase (pfk) and fructose-bisphosphate aldolase (fbaA) enzymes. The strain's capacity to synthesize vitamins B2, B5, and B9 has been verified using computational tools. Cholesterol assimilation (46.28±1.6%) and antioxidant activity against DPPH (59.04±0.43%) and ABTS+ (77.76±0.33%) were verified via in vitro tests. The study of the TRA56's genetic and metabolic characteristics demonstrated its potential as a probiotic food supplement, offering functional advantages to the host.

Supporting Institution

This study has been financially supported by Erciyes University Scientifc Research Projects Coordination Unit under grant number FKB-2020–10551.

Project Number

FKB-2020–10551

Thanks

I would like to thank the Proofreading & Editing Office of the Dean for Research at Erciyes University for the copyediting and proofreading service for this manuscript.

References

  • Agirman, B., Settanni, L., & Erten, H. (2021). Effect of different mineral salt mixtures and dough extraction procedure on the physical, chemical and microbiological composition of Salgam: A black carrot fermented beverage. Food Chem, 344, 128618. https://doi.org/10.1016/j.foodchem.2020.128618
  • Agolino, G., Pino, A., Vaccalluzzo, A., Cristofolini, M., Solieri, L., Caggia, C., & Randazzo, C. L. (2024). Bile salt hydrolase: The complexity behind its mechanism in relation to lowering-cholesterol lactobacilli probiotics. Journal of Functional Foods, 120, 106357.
  • Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., & Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12, 402. https://doi.org/10.1186/1471-2164-12-402
  • Arena, M., Fiocco, D., Massa, S., Capozzi, V., Russo, P., & Spano, G. (2014). Lactobacillus plantarum as a strategy for an in situ production of vitamin B2. Journal of Food and Nutritional Disorders, 1(4), S1-004.
  • Arias, C. A., Panesso, D., McGrath, D. M., Qin, X., Mojica, M. F., Miller, C., Diaz, L., Tran, T. T., Rincon, S., Barbu, E. M., Reyes, J., Roh, J. H., Lobos, E., Sodergren, E., Pasqualini, R., Arap, W., Quinn, J. P., Shamoo, Y., Murray, B. E., & Weinstock, G. M. (2011). Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med, 365(10), 892-900. https://doi.org/10.1056/NEJMoa1011138
  • Behera, S. S., El Sheikha, A. F., Hammami, R., & Kumar, A. (2020). Traditionally fermented pickles: How the microbial diversity associated with their nutritional and health benefits? Journal of Functional Foods, 70, 103971.
  • Blin, K., Shaw, S., Augustijn, H. E., Reitz, Z. L., Biermann, F., Alanjary, M., Fetter, A., Terlouw, B. R., Metcalf, W. W., Helfrich, E. J. N., van Wezel, G. P., Medema, M. H., & Weber, T. (2023). antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res, 51(W1), W46-W50. https://doi.org/10.1093/nar/gkad344
  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  • Brettin, T., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Olsen, G. J., Olson, R., Overbeek, R., Parrello, B., Pusch, G. D., Shukla, M., Thomason, J. A., 3rd, Stevens, R., Vonstein, V., Wattam, A. R., & Xia, F. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep, 5, 8365. https://doi.org/10.1038/srep08365
  • Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assuncao, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carriere, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., . . . Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc, 14(4), 991-1014. https://doi.org/10.1038/s41596-018-0119-1
  • Buron-Moles, G., Chailyan, A., Dolejs, I., Forster, J., & Miks, M. H. (2019). Uncovering carbohydrate metabolism through a genotype-phenotype association study of 56 lactic acid bacteria genomes. Appl Microbiol Biotechnol, 103(7), 3135-3152. https://doi.org/10.1007/s00253-019-09701-6
  • Campedelli, I., Mathur, H., Salvetti, E., Clarke, S., Rea, M. C., Torriani, S., Ross, R. P., Hill, C., & O'Toole, P. W. (2019). Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl Environ Microbiol, 85(1). https://doi.org/10.1128/AEM.01738-18
  • Chaffanel, F., Charron-Bourgoin, F., Soligot, C., Kebouchi, M., Bertin, S., Payot, S., Le Roux, Y., & Leblond-Bourget, N. (2018). Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol, 102(6), 2851-2865. https://doi.org/10.1007/s00253-018-8794-y
  • Choi, S., Jin, G. D., Park, J., You, I., & Kim, E. B. (2018). Pan-Genomics of Lactobacillus plantarum Revealed Group-Specific Genomic Profiles without Habitat Association. J Microbiol Biotechnol, 28(8), 1352-1359.https://doi.org/10.4014/jmb.1803.03029
  • Costa, M. G., Ooki, G. N., Vieira, A. D., Bedani, R., & Saad, S. M. (2017). Synbiotic Amazonian palm berry (acai, Euterpe oleracea Mart.) ice cream improved Lactobacillus rhamnosus GG survival to simulated gastrointestinal stress. Food Funct, 8(2), 731-740. https://doi.org/10.1039/c6fo00778c
  • Czumaj, A., Szrok-Jurga, S., Hebanowska, A., Turyn, J., Swierczynski, J., Sledzinski, T., & Stelmanska, E. (2020). The Pathophysiological Role of CoA. Int J Mol Sci, 21(23). https://doi.org/10.3390/ijms21239057
  • D'Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., & Kost, C. (2018). Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep, 35(5), 455-488, https://doi.org/10.1039/c8np00009c
  • Darmastuti, A., Hasan, P. N., Wikandari, R., Utami, T., Rahayu, E. S., & Suroto, D. A. (2021). Adhesion Properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley Rat Intestine. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112336
  • Das, D. J., Shankar, A., Johnson, J. B., & Thomas, S. (2020). Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition, 69, 110567.
  • De Souza, B. M. S., Borgonovi, T. F., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Lactobacillus casei and Lactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions. Probiotics Antimicrob Proteins, 11(2), 382-396. https://doi.org/10.1007/s12602-018-9406-y
  • Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol, 31(6), 438-442. https://doi.org/10.1046/j.1365-2672.2000.00845.x
  • Delany, I., Sheehan, M. M., Fenton, A., Bardin, S., Aarons, S., & O'Gara, F. (2000). Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology (Reading), 146 ( Pt 2), 537-546. https://doi.org/10.1099/00221287-146-2-537
  • Dereeper, A., Summo, M., & Meyer, D. F. (2022). PanExplorer: a web-based tool for exploratory analysis and visualization of bacterial pan-genomes. Bioinformatics, 38(18), 4412-4414. https://doi.org/10.1093/bioinformatics/btac504
  • Desguin, B., Goffin, P., Viaene, E., Kleerebezem, M., Martin-Diaconescu, V., Maroney, M. J., Declercq, J. P., Soumillion, P., & Hols, P. (2014). Lactate racemase is a nickel-dependent enzyme activated by a widespread maturation system. Nat Commun, 5, 3615. https://doi.org/10.1038/ncomms4615
  • Douthwaite, S., Jakobsen, L., Yoshizawa, S., & Fourmy, D. (2008). Interaction of the tylosin-resistance methyltransferase RlmA II at its rRNA target differs from the orthologue RlmA I. J Mol Biol, 378(5), 969-975. https://doi.org/10.1016/j.jmb.2008.03.024
  • Duar, R. M., Lin, X. B., Zheng, J., Martino, M. E., Grenier, T., Perez-Munoz, M. E., Leulier, F., Ganzle, M., & Walter, J. (2017). Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev, 41(Supp_1), S27-S48. https://doi.org/10.1093/femsre/fux030
  • Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metab, 25(1), 27-42. https://doi.org/10.1016/j.cmet.2016.08.009
  • Ekinci, F. Y., Baser, G. M., Özcan, E., Üstündağ, Ö. G., Korachi, M., Sofu, A., Blumberg, J. B., & Chen, C.-Y. O. (2016). Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. European Food Research and Technology, 242, 1355-1368.
  • Erginkaya, Z., & Turhan, E. Ü. (2016). Enumeration and identification of dominant microflora during the fermentation of Shalgam. Akademik Gıda, 14(2), 92-97.
  • Evanovich, E., de Souza Mendonca Mattos, P. J., & Guerreiro, J. F. (2019). Comparative Genomic Analysis of Lactobacillus plantarum: An Overview. Int J Genomics, 2019, 4973214. https://doi.org/10.1155/2019/4973214
  • Fatemizadeh, S. S., Krych, L., Castro-Mejia, J. L., Stefanova, D. V., Kot, W., Habibi Najafi, M. B., & Nielsen, D. S. (2023). Complete Genome Sequences of Three Lactiplantibacillus plantarum Strains Isolated from Traditional Iranian Raw Milk Motal Cheese. Microbiol Resour Announc, 12(1), e0047922. https://doi.org/10.1128/mra.00479-22
  • Fidanza, M., Panigrahi, P., & Kollmann, T. R. (2021). Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol, 12, 712236. https://doi.org/10.3389/fmicb.2021.712236
  • Fiocco, D., Capozzi, V., Collins, M., Gallone, A., Hols, P., Guzzo, J., Weidmann, S., Rieu, A., Msadek, T., & Spano, G. (2010). Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol, 192(3), 896-900. https://doi.org/10.1128/JB.01122-09
  • Florez, A. B., Delgado, S., & Mayo, B. (2005). Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Can J Microbiol, 51(1), 51-58. https://doi.org/10.1139/w04-114
  • Friedman, L., Alder, J. D., & Silverman, J. A. (2006). Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother, 50(6), 2137-2145. https://doi.org/10.1128/AAC.00039-06
  • Ganzle, M. G., & Follador, R. (2012). Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol, 3, 340. https://doi.org/10.3389/fmicb.2012.00340
  • Gao, Y., Liu, Y., Sun, M., Zhang, H., Mu, G., & Tuo, Y. (2020). Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. Journal of dairy science, 103(7), 5916-5930.
  • Goel, A., Halami, P. M., & Tamang, J. P. (2020). Genome Analysis of Lactobacillus plantarum Isolated From Some Indian Fermented Foods for Bacteriocin Production and Probiotic Marker Genes. Front Microbiol, 11, 40. https://doi.org/10.3389/fmicb.2020.00040
  • Groth, A. C., Olivares, E. C., Thyagarajan, B., & Calos, M. P. (2000). A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A, 97(11),5995-6000. https://doi.org/10.1073/pnas.090527097
  • Guo, L., Yang, L.-J., & Huo, G.-C. (2011). Cholesterol removal by Lactobacillus plantarum isolated from homemade fermented cream in Inner Mongolia of China. Czech Journal of Food Sciences, 29(3), 219-225.
  • Haddaji, N., Mahdhi, A. K., Krifi, B., Ismail, M. B., & Bakhrouf, A. (2015). Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS microbiology letters, 362(9), fnv047. Heath, R. J., & Rock, C. O. (2000). A triclosan-resistant bacterial enzyme. Nature, 406(6792), 145-146. mhttps://doi.org/10.1038/35018162
  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 11(8), 506-514. https://doi.org/10.1038/nrgastro.2014.66
  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res, 47(D1),D309-D314. https://doi.org/10.1093/nar/gky1085
  • Jain, C., Rodriguez, R. L., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun,9(1),5114. https://doi.org/10.1038/s41467-018-07641-9
  • Juhas, M., van der Meer, J.R., Gaillard, M., Harding, R.M., Hood, W.H., Crook, D.W. (2009). Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews, Volume 33, Issue 2, Pages 376–393. https://doi.org/10.1111/j.1574-6976.2008.00136.x.
  • Kandasamy, S., Yoo, J., Yun, J., Lee, K. H., Kang, H. B., Kim, J. E., Oh, M. H., & Ham, J. S. (2022). Probiogenomic In-Silico Analysis and Safety Assessment of Lactiplantibacillus plantarum DJF10 Strain Isolated from Korean Raw Milk. Int J Mol Sci, 23(22). https://doi.org/10.3390/ijms232214494
  • Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J Mol Biol, 428(4), 726-731. https://doi.org/10.1016/j.jmb.2015.11.006
  • Kesmen, Z., Yetiman, A. E., Gulluce, A., Kacmaz, N., Sagdic, O., Cetin, B., Adiguzel, A., Sahin, F., & Yetim, H. (2012). Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. Int J Food Microbiol, 153(3), 428-435. https://doi.org/10.1016/j.ijfoodmicro.2011.12.008
  • Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W., Stiekema, W., Lankhorst, R. M., Bron, P. A., Hoffer, S. M., Groot, M. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A, 100(4), 1990-1995. https://doi.org/10.1073/pnas.0337704100
  • Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation, 5(4), 100.
  • Laiño, J. E., Zelaya, H., del Valle, M. J., de Giori, G. S., & LeBlanc, J. G. (2015). Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. Journal of Functional Foods, 17, 22-32.
  • Lang, H. P., Cogdell, R. J., Gardiner, A. T., & Hunter, C. N. (1994). Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. J Bacteriol, 176(13), 3859-3869. https://doi.org/10.1128/jb.176.13.3859-3869.1994
  • Lau, L. Y. J., & Quek, S. Y. (2024). Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. Food Bioengineering, 3(1), 41-64. Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M. C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I(4). Appl Environ Microbiol, 66(12), 5213-5220. https://doi.org/10.1128/AEM.66.12.5213-5220.2000
  • Lessard, I. A., & Walsh, C. T. (1999). VanX, a bacterial D-alanyl-D-alanine dipeptidase: resistance, immunity, or survival function? Proc Natl Acad Sci U S A, 96(20), 11028-11032. https://doi.org/10.1073/pnas.96.20.11028
  • Li, P., Zhou, Q., & Gu, Q. (2016). Complete genome sequence of Lactobacillus plantarum LZ227, a potential probiotic strain producing B-group vitamins. J Biotechnol, 234, 66-70. https://doi.org/10.1016/j.jbiotec.2016.07.020
  • Li, Z., Song, Q., Wang, M., Ren, J., Liu, S., & Zhao, S. (2021). Comparative genomics analysis of Pediococcus acidilactici species. J Microbiol, 59(6), 573-583. https://doi.org/10.1007/s12275-021-0618-6
  • Liu, C. J., Wang, R., Gong, F. M., Liu, X. F., Zheng, H. J., Luo, Y. Y., & Li, X. R. (2015). Complete genome sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated from fermented soybean. Genomics, 106(6), 404-411. https://doi.org/10.1016/j.ygeno.2015.07.007
  • Lu, J., & Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic Biol Med, 66, 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
  • Martino, M. E., Bayjanov, J. R., Caffrey, B. E., Wels, M., Joncour, P., Hughes, S., Gillet, B., Kleerebezem, M., van Hijum, S. A., & Leulier, F. (2016). Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol, 18(12), 4974-4989. https://doi.org/10.1111/1462-2920.13455
  • Mishra, V., & Prasad, D. N. (2005). Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol, 103(1), 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  • Morita, H., Toh, H., Fukuda, S., Horikawa, H., Oshima, K., Suzuki, T., Murakami, M., Hisamatsu, S., Kato, Y., Takizawa, T., Fukuoka, H., Yoshimura, T., Itoh, K., O'Sullivan, D. J., McKay, L. L., Ohno, H., Kikuchi, J., Masaoka, T., & Hattori, M. (2008). Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res, 15(3), 151-161. https://doi.org/10.1093/dnares/dsn009
  • Mosquera-Rendon, J., Rada-Bravo, A. M., Cardenas-Brito, S., Corredor, M., Restrepo-Pineda, E., & Benitez-Paez, A. (2016). Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species. BMC Genomics, 17, 45. https://doi.org/10.1186/s12864-016-2364-4
  • Nazir, A., Xu, X., Liu, Y., Chen, Y. (2023). Phage Endolysins: Advances in the World of Food Safety. Cells, 12, 2169. https://doi.org/10.3390/cells12172169.
  • Okamoto, S., Tamaru, A., Nakajima, C., Nishimura, K., Tanaka, Y., Tokuyama, S., Suzuki, Y., & Ochi, K. (2007). Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol, 63(4), 1096-1106. https://doi.org/10.1111/j.1365-2958.2006.05585.x
  • Olson, R. D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J. J., Dempsey, D. M., Dickerman, A., Dietrich, E. M., Kenyon, R. W., Kuscuoglu, M., Lefkowitz, E. J., Lu, J., Machi, D., Macken, C., Mao, C., Niewiadomska, A., Nguyen, M., Olsen, G. J., . . . Stevens, R. L. (2023). Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res, 51(D1), D678-D689. https://doi.org/10.1093/nar/gkac1003
  • Olukoya, D., Ebigwei, S., Adebawo, O., & Osiyemi, F. (1993). Plasmid profiles and antibiotic susceptibility patterns of Lactobacillus isolated from fermented foods in Nigeria. Food microbiology, 10(4), 279-285.
  • Ozturk, G., Yetiman, A. E., & Dogan, M. (2019). The bioactive efficiency of ultrasonic extracts from acorn leaves and green walnut husks against Bacillus cereus: a hybrid approach to PCA with the Taguchi method. Journal of Food Measurement and Characterization, 13, 1257-1268.
  • Pan, M., Kumaree, K. K., & Shah, N. P. (2017). Physiological Changes of Surface Membrane in Lactobacillus with Prebiotics. J Food Sci, 82(3), 744-750. https://doi.org/10.1111/1750-3841.13608
  • Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J, 3, e201210003. https://doi.org/10.5936/csbj.201210003
  • Parente, E., Ciocia, F., Ricciardi, A., Zotta, T., Felis, G. E., & Torriani, S. (2010). Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. Int J Food Microbiol, 144(2), 270-279. https://doi.org/10.1016/j.ijfoodmicro.2010.10.005
  • Peleg, A. Y., Miyakis, S., Ward, D. V., Earl, A. M., Rubio, A., Cameron, D. R., Pillai, S., Moellering, R. C., Jr., & Eliopoulos, G. M. (2012). Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One, 7(1), e28316. https://doi.org/10.1371/journal.pone.0028316
  • Perrin, A., & Rocha, E. P. C. (2021). PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genom Bioinform, 3(1), lqaa106. https://doi.org/10.1093/nargab/lqaa106
  • Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., & Korobeynikov, A. (2020). Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics, 70(1), e102. https://doi.org/10.1002/cpbi.102
  • Qiao, N., Wittouck, S., Mattarelli, P., Zheng, J., Lebeer, S., Felis, G. E., & Ganzle, M. G. (2022). After the storm-Perspectives on the taxonomy of Lactobacillaceae. JDS Commun, 3(3), 222-227. https://doi.org/10.3168/jdsc.2021-0183
  • R-Core-Team. (2021). R: A language and environment for statistical computing [computer software]. Vienna, Austria: R Foundation for Statistical Computing. Rajoka, M. S. R., Mehwish, H. M., Siddiq, M., Haobin, Z., Zhu, J., Yan, L., Shao, D., Xu, X., & Shi, J. (2017). Identification, characterization, and probiotic potential of Lactobacillus rhamnosus isolated from human milk. LWT, 84, 271-280.
  • Ranadheera, R., Baines, S. K., & Adams, M. C. (2010). Importance of food in probiotic efficacy. Food research international, 43(1), 1-7.
  • Rudel, L. L., & Morris, M. D. (1973). Determination of cholesterol using o-phthalaldehyde. J Lipid Res, 14(3), 364-366. https://www.ncbi.nlm.nih.gov/pubmed/14580182
  • Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. (2017). Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol, 247, 48-54. https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
  • Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G., & Drider, D. (2017). Lactobacillus plantarum and Its Probiotic and Food Potentialities. Probiotics Antimicrob Proteins, 9(2), 111-122. https://doi.org/10.1007/s12602-017-9264-z
  • Sharifi-Rad, J., Rodrigues, C. F., Stojanovic-Radic, Z., Dimitrijevic, M., Aleksic, A., Neffe-Skocinska, K., Zielinska, D., Kolozyn-Krajewska, D., Salehi, B., Milton Prabu, S., Schutz, F., Docea, A. O., Martins, N., & Calina, D. (2020). Probiotics: Versatile Bioactive Components in Promoting Human Health. Medicina (Kaunas), 56(9). https://doi.org/10.3390/medicina56090433
  • Singh, S., Dhankar, N., Garg, A.K., Molugulu, N., Kesharwani, P. (2020). Tuberculosis: introduction, drug regimens, and multidrug-resistance. In P. Kesharwani (Ed.), Nanotechnology Based Approaches for Tuberculosis Treatment (pp 27-36). Academic Press.
  • Snipen, L., & Liland, K. H. (2015). micropan: an R-package for microbial pan-genomics. BMC Bioinformatics, 16, 79. https://doi.org/10.1186/s12859-015-0517-0
  • Song, M., Yun, B., Moon, J. H., Park, D. J., Lim, K., & Oh, S. (2015). Characterization of Selected Lactobacillus Strains for Use as Probiotics. Korean J Food Sci Anim Resour, 35(4), 551-556. https://doi.org/10.5851/kosfa.2015.35.4.551
  • Stogios, P. J., & Savchenko, A. (2020). Molecular mechanisms of vancomycin resistance. Protein Science, 29(3), 654-669.
  • Tanguler, H., Cankaya, A., Agcam, E., & Uslu, H. (2021). Effect of temperature and production method on some quality parameters of fermented carrot juice (Shalgam). Food Bioscience, 41, 100973.
  • Tanguler, H., & Erten, H. (2012). Occurrence and growth of lactic acid bacteria species during the fermentation of shalgam (salgam), a traditional Turkish fermented beverage. LWT-Food Science and Technology, 46(1), 36-41.
  • Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K. D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res, 44(14), 6614-6624. https://doi.org/10.1093/nar/gkw569
  • Tettelin, H., Riley, D., Cattuto, C., & Medini, D. (2008). Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol, 11(5), 472-477. https://doi.org/10.1016/j.mib.2008.09.006
  • Thompson, H. O., Onning, G., Holmgren, K., Strandler, H. S., & Hultberg, M. (2020). Fermentation of Cauliflower and White Beans with Lactobacillus plantarum - Impact on Levels of Riboflavin, Folate, Vitamin B(12), and Amino Acid Composition. Plant Foods Hum Nutr, 75(2), 236-242. https://doi.org/10.1007/s11130-020-00806-2
  • von Wright, A. (2005). Regulating the safety of probiotics--the European approach. Curr Pharm Des, 11(1), 17-23. https://doi.org/10.2174/1381612053382322
  • Wang, Lu, C., Xu, Q., Li, Z., Song, Y., Zhou, S., Guo, L., Zhang, T., & Luo, X. (2022). Comparative Genomics Analysis Provides New Insights into High Ethanol Tolerance of Lactiplantibacillus pentosus LTJ12, a Novel Strain Isolated from Chinese Baijiu. Foods, 12(1). https://doi.org/10.3390/foods12010035
  • Wang, B., Zhao, A., Novick, R. P., & Muir, T. W. (2015). Key driving forces in the biosynthesis of autoinducing peptides required for staphylococcal virulence. Proc Natl Acad Sci U S A, 112(34), 10679-10684. https://doi.org/10.1073/pnas.1506030112
  • Wang, G., Zhang, M., Zhao, J., Xia, Y., Lai, P. F., & Ai, L. (2018). A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells. Front Microbiol, 9, 2858. https://doi.org/10.3389/fmicb.2018.02858
  • Wang, Y., Dong, J., Wang, J., Chi, W., Zhou, W., Tian, Q., Hong, Y., Zhou, X., Ye, H., Tian, X., Hu, R., & Wong, A. (2022). Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol, 14(1), 2019992. https://doi.org/10.1080/20002297.2021.2019992
  • Wang, Y., Liang, Q., Lu, B., Shen, H., Liu, S., Shi, Y., Leptihn, S., Li, H., Wei, J., Liu, C., Xiao, H., Zheng, X., Liu, C., & Chen, H. (2021). Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genomics, 22(1), 210. https://doi.org/10.1186/s12864-021-07539-9
  • Wang, Z., Song, L., Huang, Y., Wang, S., & Ren, Z. (2014). Inhibitory effect of Lactobacillus plantarum DOMLa on inflammatory response induced by Vibrio vulnificus.
  • Wilson, J. M., Fitschen, P. J., Campbell, B., Wilson, G. J., Zanchi, N., Taylor, L., Wilborn, C., Kalman, D. S., Stout, J. R., Hoffman, J. R., Ziegenfuss, T. N., Lopez, H. L., Kreider, R. B., Smith-Ryan, A. E., & Antonio, J. (2013). International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J Int Soc Sports Nutr, 10(1), 6. https://doi.org/10.1186/1550-2783-10-6
  • Wishart, D. S., Han, S., Saha, S., Oler, E., Peters, H., Grant, J. R., Stothard, P., & Gautam, V. (2023). PHASTEST: faster than PHASTER, better than PHAST. Nucleic Acids Res, 51(W1), W443-W450. https://doi.org/10.1093/nar/gkad382
  • Xenophontos, C., Taubert, M., Harpole, W. S., & Kusel, K. (2021). Phylogenetic and metabolic diversity have contrasting effects on the ecological functioning of bacterial communities. FEMS Microbiol Ecol, 97(3). https://doi.org/10.1093/femsec/fiab017
  • Yang, S. J., Xiong, Y. Q., Dunman, P. M., Schrenzel, J., Francois, P., Peschel, A., & Bayer, A. S. (2009). Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother, 53(6), 2636-2637. https://doi.org/10.1128/AAC.01415-08
  • Yetiman, A., Horzum, M., Bahar, D., & Akbulut, M. (2024). Assessment of Genomic and Metabolic Characteristics of Cholesterol-Reducing and GABA Producer Limosilactobacillus fermentum AGA52 Isolated from Lactic Acid Fermented Shalgam Based on "In Silico" and "In Vitro" Approaches. Probiotics Antimicrob Proteins, 16(2), 334-351. https://doi.org/10.1007/s12602-022-10038-2
  • Yetiman, A. E., Keskin, A., Darendeli, B. N., Kotil, S. E., Ortakci, F., & Dogan, M. (2022). Characterization of genomic, physiological, and probiotic features Lactiplantibacillus plantarum DY46 strain isolated from traditional lactic acid fermented shalgam beverage. Food Bioscience, 46, 101499. https://doi.org/https://doi.org/10.1016/j.fbio.2021.101499
  • Zhang, S., Liu, R., Ma, Y., Ma, Y., Feng, H., Ding, X., Zhang, Q., Li, Y., Shan, J., Bian, H., Zhu, R., & Meng, Q. (2024). Lactiplantibacillus plantarum ATCC8014 Alleviates Postmenopausal Hypercholesterolemia in Mice by Remodeling Intestinal Microbiota to Increase Secondary Bile Acid Excretion. J Agric Food Chem, 72(12), 6236-6249. https://doi.org/10.1021/acs.jafc.3c08232
  • Zhang, Z. Y., Liu, C., Zhu, Y. Z., Wei, Y. X., Tian, F., Zhao, G. P., & Guo, X. K. (2012). Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol, 153(1-2), 166-170. https://doi.org/10.1016/j.ijfoodmicro.2011.11.003
  • Zhao, K., Qiu, L., Tao, X., Zhang, Z., & Wei, H. (2024). Genome Analysis for Cholesterol-Lowing Action and Bacteriocin Production of Lactiplantibacillus plantarum WLPL21 and ZDY04 from Traditional Chinese Fermented Foods. Microorganisms, 12(1). https://doi.org/10.3390/microorganisms12010181
  • Zheng, J., Wittouck, S., Salvetti, E., Franz, C., Harris, H. M. B., Mattarelli, P., O'Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Ganzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol, 70(4), 2782-2858. https://doi.org/10.1099/ijsem.0.004107
There are 106 citations in total.

Details

Primary Language English
Subjects Microbial Genetics, Enzyme and Microbial Biotechnology in Agriculture
Journal Section Research Articles
Authors

Ahmet Yetiman 0000-0001-8406-7226

Project Number FKB-2020–10551
Early Pub Date January 8, 2025
Publication Date
Submission Date May 14, 2024
Acceptance Date November 30, 2024
Published in Issue Year 2025 Volume: 34 Issue: 1

Cite

APA Yetiman, A. (2025). Pangenome analysis and “in silico” overview of carbohydrate and vitamin metabolism of Lactiplantibacillus plantarum strain TRA56 obtained from lactic-acid fermented beverage known as Shalgam. Biotech Studies, 34(1), 1-21. https://doi.org/10.38042/biotechstudies.1615601


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services