Review
BibTex RIS Cite

Epigenome Editing: Emerging Tools, Therapeutic Applications, and Challenges in Human Disease Treatment

Year 2026, Volume: 35 Issue: 2, 13 - 34

Abstract

Epigenetic modifications, including histone alterations, non-coding RNA interactions, and DNA methylation, regulate gene expression without altering the underlying DNA sequence. These modifications are essential for normal biological processes; however, their aberrant regulation is linked to numerous life-threatening disorders. Genome editing nucleases such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas systems offer promising tools for the precise correction of epigenetic abnormalities. This review explores epigenetic mechanisms, genome editing technologies for epigenetic modulation, and their applications in disease contexts, such as cancer and neurodegeneration, with reference to both in vitro and in vivo studies demonstrating therapeutic potential. For instance, aberrant histone acetylation and methylation patterns are frequently observed in cancer. Abnormal DNA methylation and disruptions in histone modifications have been implicated in neurological disorders, such as Alzheimer’s and Huntington’s disease. Although ZFNs and TALENs are foundational tools, their use has been limited by challenges in protein engineering and nonspecific targeting. CRISPR/Cas systems have become a versatile platform. Catalytically inactive Cas9 (dCas9) can be fused to epigenetic editing domains, such as histone deacetylases and DNA methyltransferases, to precisely regulate gene expression. For example, dCas9 has been used to reactivate the BRCA1 tumor suppressor gene in cancer cells. Although epigenetic editing holds significant promise in biomedical research and precision medicine, several challenges remain. These include unintended epigenetic alterations, the efficient delivery of editing tools to target cells, and limited in vivo validation. Future studies using animal models are essential to evaluate the translational potential and clinical applicability of this approach.

Ethical Statement

Not applicable

Supporting Institution

Work supported by Ministry of Economy and Competitiveness (MEC) grants from Spanish government (“EpiFarm”: AGL2013–41047–R) and Aquagenomics (CDS2007-0002) to FP LR was supported by an Epifarm contract.

Project Number

Grant Number 29763, Ethics Code: IR.SBMU.RETECH.REC.1400.655

Thanks

The authors wish to thank Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, and School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, for their support.

References

  • Adhikari, N., Jha, T., & Ghosh, B. (2021). Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy. Journal of Medicinal Chemistry, 64(13), 8827-8869. https://doi.org/10.1021/acs.jmedchem.0c01676
  • Alaskhar Alhamwe, B., Khalaila, R., Wolf, J., von Bulow, V., Harb, H., Alhamdan, F., Hii, C. S., Prescott, S. L., Ferrante, A., Renz, H., Garn, H., & Potaczek, D. P. (2018). Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma, and Clinical Immunology, 14, 39. https://doi.org/10.1186/s13223-018-0259-4
  • Alghamdi, T. A., Batchu, S. N., Hadden, M. J., Yerra, V. G., Liu, Y., Bowskill, B. B., Advani, S. L., Geldenhuys, L., Siddiqi, F. S., Majumder, S., & Advani, A. (2018). Histone H3 Serine 10 Phosphorylation Facilitates Endothelial Activation in Diabetic Kidney Disease. Diabetes, 67(12), 2668-2681. https://doi.org/10.2337/db18-0124
  • Altinbay, M., Wang, J., Chen, J., Schafer, D., Sprang, M., Blagojevic, B., Wolfl, S., Andrade-Navarro, M. A., Dikic, I., Knapp, S., & Cheng, X. (2024). Chem-CRISPR/dCas9FCPF: a platform for chemically induced epigenome editing. Nucleic Acids Research, 52(19), 11587-11601. https://doi.org/10.1093/nar/gkae798
  • Baccarelli, A. A., & Ordovas, J. (2023). Epigenetics of Early Cardiometabolic Disease: Mechanisms and Precision Medicine. Circulation Research, 132(12), 1648-1662. https://doi.org/10.1161/CIRCRESAHA.123.322135
  • Bayat, H., Farahmand, F., Tabatabaee, S. H., Shams, F., Mohammadian, O., Pourmaleki, E., & Rahimpour, A. (2024a). Evaluation of the paired-Cas9 nickase and RNA-guided FokI genome editing tools in precise integration of an anti-CD52 bicistronic monoclonal antibody expression construct at Chinese hamster ovary cells 18S rDNA locus. Protein Expression and Purification, 217, 106445. https://doi.org/10.1016/j.pep.2024.106445
  • Bayat, H., Mirahmadi, M., Azarshin, Z., Ohadi, H., Delbari, A., & Ohadi, M. (2024b). CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells. Scientific Reports, 14(1), 2136. https://doi.org/10.1038/s41598-024-52675-3
  • Bayat, H., Modarressi, M. H., & Rahimpour, A. (2018). The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Current Microbiology, 75(1), 107-115. https://doi.org/10.1007/s00284-017-1406-8
  • Bayat, H., Omidi, M., Rajabibazl, M., Sabri, S., & Rahimpour, A. (2017). The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Journal of Microbiology and Biotechnology, 27(2), 207-218. https://doi.org/10.4014/jmb.1607.07005
  • Becker, S., & Boch, J. (2021). TALE and TALEN genome editing technologies. Gene and Genome Editing, 2. https://doi.org/10.1016/j.ggedit.2021.100007
  • Berdasco, M., & Esteller, M. (2013). Genetic syndromes caused by mutations in epigenetic genes. Human Genetics, 132(4), 359-383. https://doi.org/10.1007/s00439-013-1271-x
  • Bertino, E. M., & Otterson, G. A. (2011). Romidepsin: a novel histone deacetylase inhibitor for cancer. Expert Opinion on Investigational Drugs, 20(8), 1151-1158. https://doi.org/10.1517/13543784.2011.594437
  • Bingen, J. M., Clark, L. V., Band, M. R., Munzir, I., & Carrithers, M. D. (2022). Differential DNA methylation associated with multiple sclerosis and disease modifying treatments in an underrepresented minority population. Frontiers in Genetics, 13, 1058817. https://doi.org/10.3389/fgene.2022.1058817
  • Black, J. B., Adler, A. F., Wang, H. G., D'Ippolito, A. M., Hutchinson, H. A., Reddy, T. E., Pitt, G. S., Leong, K. W., & Gersbach, C. A. (2016). Targeted Epigenetic Remodeling of Endogenous Loci by CRISPR/Cas9-Based Transcriptional Activators Directly Converts Fibroblasts to Neuronal Cells. Cell Stem Cell, 19(3), 406-414. https://doi.org/10.1016/j.stem.2016.07.001
  • Blum, K., Bowirrat, A., Baron, D., Elman, I., Makale, M. T., Cadet, J. L., Thanos, P. K., Hanna, C., Ahmed, R., Gondre-Lewis, M. C., Dennen, C. A., Braverman, E. R., Soni, D., Carney, P., Khalsa, J., Modestino, E. J., Barh, D., Bagchi, D., Badgaiyan, R. D.,…Gold, M. S. (2024). Identification of stress-induced epigenetic methylation onto dopamine D2 gene and neurological and behavioral consequences. Gene & Protein in Disease, 3(1). https://doi.org/10.36922/gpd.1966
  • Bohnsack, J. P., Zhang, H., Wandling, G. M., He, D., Kyzar, E. J., Lasek, A. W., & Pandey, S. C. (2022). Targeted epigenomic editing ameliorates adult anxiety and excessive drinking after adolescent alcohol exposure. Science Advances, 8(18), eabn2748. https://doi.org/10.1126/sciadv.abn2748
  • Brandt, B., Rashidiani, S., Ban, A., & Rauch, T. A. (2019). DNA Methylation-Governed Gene Expression in Autoimmune Arthritis. International Journal of Molecular Sciences, 20(22). https://doi.org/10.3390/ijms20225646
  • Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communication, 8(1), 560. https://doi.org/10.1038/s41467-017-00644-y
  • Brezgin, S., Kostyusheva, A., Kostyushev, D., & Chulanov, V. (2019). Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 20(23). https://doi.org/10.3390/ijms20236041
  • Cappelluti, M. A., Mollica Poeta, V., Valsoni, S., Quarato, P., Merlin, S., Merelli, I., & Lombardo, A. (2024). Durable and efficient gene silencing in vivo by hit-and-run epigenome editing. Nature, 627(8003), 416-423. https://doi.org/10.1038/s41586-024-07087-8
  • Castro-Munoz, L. J., Ulloa, E. V., Sahlgren, C., Lizano, M., De La Cruz-Hernandez, E., & Contreras-Paredes, A. (2023). Modulating epigenetic modifications for cancer therapy (Review). Oncology Reports, 49(3). https://doi.org/10.3892/or.2023.8496
  • Cavazza, A., Molina-Estevez, F. J., Reyes, A. P., Ronco, V., Naseem, A., Malensek, S., Pecan, P., Santini, A., Heredia, P., Aguilar-Gonzalez, A., Boulaiz, H., Ni, Q., Cortijo-Gutierrez, M., Pavlovic, K., Herrera, I., de la Cerda, B., Garcia-Tenorio, E. M., Richard, E., Granados-Principal, S.,…Benabdellah, K. (2025). Advanced delivery systems for gene editing: A comprehensive review from the GenE-HumDi COST Action Working Group. Molecular Therapy Nucleic Acids, 36(1), 102457. https://doi.org/10.1016/j.omtn.2025.102457
  • Celarain, N., & Tomas-Roig, J. (2020). Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. Journal of Neuroinflammation, 17(1), 21. https://doi.org/10.1186/s12974-019-1667-1
  • Cerna, M. (2019). Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. International Journal of Molecular Sciences, 21(1). https://doi.org/10.3390/ijms21010036
  • Chandrasegaran, S. (2017). Recent advances in the use of ZFN-mediated gene editing for human gene therapy. Cell & Gene Therapy Insights, 3(1), 33-41. https://doi.org/10.18609/cgti.2017.005
  • Chen, S. H., Lv, Q. L., Hu, L., Peng, M. J., Wang, G. H., & Sun, B. (2017). DNA methylation alterations in the pathogenesis of lupus. Clinical and Experimental Immunology, 187(2), 185-192. https://doi.org/10.1111/cei.12877
  • Chen, Y., Ren, B., Yang, J., Wang, H., Yang, G., Xu, R., You, L., & Zhao, Y. (2020). The role of histone methylation in the development of digestive cancers: a potential direction for cancer management. Signal Transduction and Targeted Therapy, 5(1), 143. https://doi.org/10.1038/s41392-020-00252-1
  • Choudhury, S. R., Cui, Y., Lubecka, K., Stefanska, B., & Irudayaraj, J. (2016). CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget, 7(29), 46545-46556. https://doi.org/10.18632/oncotarget.10234
  • Costa, P., Sales, S. L. A., Pinheiro, D. P., Pontes, L. Q., Maranhao, S. S., Pessoa, C. D. O., Furtado, G. P., & Furtado, C. L. M. (2023). Epigenetic reprogramming in cancer: From diagnosis to treatment. Frontiers in Cell & Developmental Biology, 11, 1116805. https://doi.org/10.3389/fcell.2023.1116805
  • Dai, W., Qiao, X., Fang, Y., Guo, R., Bai, P., Liu, S., Li, T., Jiang, Y., Wei, S., Na, Z., Xiao, X., & Li, D. (2024). Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduction and Targeted Therapy, 9(1), 332. https://doi.org/10.1038/s41392-024-02039-0
  • Dashti, M., Nizam, R., Hebbar, P., Jacob, S., John, S. E., Channanath, A., Al-Kandari, H., Thanaraj, T. A., & Al-Mulla, F. (2022). Differentially methylated and expressed genes in familial type 1 diabetes. Scientific Reports, 12(1), 11045. https://doi.org/10.1038/s41598-022-15304-5
  • de Morais, C., Correia, E. M., Bonamino, M. H., & Vasconcelos, Z. F. M. (2024). Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy. Human Gene Therapy, 35(19-20), 781-797. https://doi.org/10.1089/hum.2024.020
  • Dehshahri, A., Biagioni, A., Bayat, H., Lee, E. H. C., Hashemabadi, M., Fekri, H. S., Zarrabi, A., Mohammadinejad, R., & Kumar, A. P. (2021). Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. International Journal of Molecular Sciences, 22(21). https://doi.org/10.3390/ijms222111321
  • Dhar, G. A., Saha, S., Mitra, P., & Nag Chaudhuri, R. (2021). DNA methylation and regulation of gene expression: Guardian of our health. Nucleus, 64(3), 259-270. https://doi.org/10.1007/s13237-021-00367-y
  • Eisenstein, M. (2012). Sangamo's lead zinc-finger therapy flops in diabetic neuropathy. Nature Biotechnology, 30(2), 121-123. https://doi.org/10.1038/nbt0212-121a
  • Espinosa, J. M. (2008). Histone H2B ubiquitination: the cancer connection. Genes & Development, 22(20), 2743-2749. https://doi.org/10.1101/gad.1732108
  • Fadul, S. M., Arshad, A., & Mehmood, R. (2023). CRISPR-based epigenome editing: mechanisms and applications. Epigenomics, 15(21), 1137-1155. https://doi.org/10.2217/epi-2023-0281
  • Fang, Z., Wang, X., Sun, X., Hu, W., & Miao, Q. R. (2021). The Role of Histone Protein Acetylation in Regulating Endothelial Function. Frontiers in Cell and Developmental Biology, 9, 672447. https://doi.org/10.3389/fcell.2021.672447
  • Friso, S., Pizzolo, F., Choi, S. W., Guarini, P., Castagna, A., Ravagnani, V., Carletto, A., Pattini, P., Corrocher, R., & Olivieri, O. (2008). Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis, 199(2), 323-327. https://doi.org/10.1016/j.atherosclerosis.2007.11.029
  • Gaj, T., Gersbach, C. A., & Barbas, C. F., 3rd. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397-405. https://doi.org/10.1016/j.tibtech.2013.04.004
  • Gao, D., & Liang, F. S. (2018). Chemical Inducible dCas9-Guided Editing of H3K27 Acetylation in Mammalian Cells. Methods in Molecular Biology, 1767, 429-445. https://doi.org/10.1007/978-1-4939-7774-1_24
  • Garcia-Bloj, B., Moses, C., Sgro, A., Plani-Lam, J., Arooj, M., Duffy, C., Thiruvengadam, S., Sorolla, A., Rashwan, R., Mancera, R. L., Leisewitz, A., Swift-Scanlan, T., Corvalan, A. H., & Blancafort, P. (2016). Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget, 7(37), 60535-60554. https://doi.org/10.18632/oncotarget.11142
  • Gjaltema, R. A. F., & Rots, M. G. (2020). Advances of epigenetic editing. Current Opinion in Chemical Biology, 57, 75-81. https://doi.org/10.1016/j.cbpa.2020.04.020
  • Grant, S., Easley, C., & Kirkpatrick, P. (2007). Vorinostat. Nature Reviews: Drug Discovery, 6(1), 21-22. https://doi.org/10.1038/nrd2227
  • Gu, M., Ren, B., Fang, Y., Ren, J., Liu, X., Wang, X., Zhou, F., Xiao, R., Luo, X., You, L., & Zhao, Y. (2024). Epigenetic regulation in cancer. MedComm (2020), 5(2), e495. https://doi.org/10.1002/mco2.495
  • Ho, T. C. S., Chan, A. H. Y., & Ganesan, A. (2020). Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of Medicinal Chemistry, 63(21), 12460-12484. https://doi.org/10.1021/acs.jmedchem.0c00830
  • Hsu, M. N., Liao, H. T., Truong, V. A., Huang, K. L., Yu, F. J., Chen, H. H., Nguyen, T. K. N., Makarevich, P., Parfyonova, Y., & Hu, Y. C. (2019). CRISPR-based Activation of Endogenous Neurotrophic Genes in Adipose Stem Cell Sheets to Stimulate Peripheral Nerve Regeneration. Theranostics, 9(21), 6099-6111. https://doi.org/10.7150/thno.36790
  • Hu, J., Lei, Y., Wong, W. K., Liu, S., Lee, K. C., He, X., You, W., Zhou, R., Guo, J. T., Chen, X., Peng, X., Sun, H., Huang, H., Zhao, H., & Feng, B. (2014). Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Research, 42(7), 4375-4390. https://doi.org/10.1093/nar/gku109
  • Hurtado, C., Acevedo Saenz, L. Y., Vasquez Trespalacios, E. M., Urrego, R., Jenks, S., Sanz, I., & Vasquez, G. (2020). DNA methylation changes on immune cells in Systemic Lupus Erythematosus. Autoimmunity, 53(3), 114-121. https://doi.org/10.1080/08916934.2020.1722108
  • Ichikawa, D. M., Abdin, O., Alerasool, N., Kogenaru, M., Mueller, A. L., Wen, H., Giganti, D. O., Goldberg, G. W., Adams, S., Spencer, J. M., Razavi, R., Nim, S., Zheng, H., Gionco, C., Clark, F. T., Strokach, A., Hughes, T. R., Lionnet, T., Taipale, M.,…Noyes, M. B. (2023). A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nature Biotechnology, 41(8), 1117-1129. https://doi.org/10.1038/s41587-022-01624-4
  • Jakovcevski, M., & Akbarian, S. (2012). Epigenetic mechanisms in neurological disease. Nature Medicine, 18(8), 1194-1204. https://doi.org/10.1038/nm.2828
  • Jallow, M. B., Huang, K., & Qiu, M. (2025). Versatility of LNPs across different administration routes for targeted RNA delivery. J Mater Chem B, 13(26), 7637-7652. https://doi.org/10.1039/d5tb00575b
  • Jeffries, M. A. (2018). Epigenetic editing: How cutting-edge targeted epigenetic modification might provide novel avenues for autoimmune disease therapy. Clinical Immunology, 196, 49-58. https://doi.org/10.1016/j.clim.2018.02.001
  • Jin, Z., & Liu, Y. (2018). DNA methylation in human diseases. Genes & Diseases, 5(1), 1-8. https://doi.org/10.1016/j.gendis.2018.01.002
  • Kannan, S., Altae-Tran, H., Zhu, S., Xu, P., Strebinger, D., Oshiro, R., Faure, G., Moeller, L., Pham, J., Mears, K. S., Ni, H. M., Macrae, R. K., & Zhang, F. (2025). Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nature Biotechnology. https://doi.org/10.1038/s41587-025-02655-3
  • Karbassi, E., Padgett, R., Bertero, A., Reinecke, H., Klaiman, J. M., Yang, X., Hauschka, S. D., & Murry, C. E. (2024). Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium. Cellular and Molecular Life Sciences, 81(1), 95. https://doi.org/10.1007/s00018-023-05101-2
  • Katayama, S., Watanabe, M., Kato, Y., Nomura, W., & Yamamoto, T. (2024). Engineering of Zinc Finger Nucleases Through Structural Modeling Improves Genome Editing Efficiency in Cells. Advanced Sciences, 11(23), e2310255. https://doi.org/10.1002/advs.202310255
  • Kazimierczyk, M., & Wrzesinski, J. (2021). Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22116166
  • Kearns, N. A., Pham, H., Tabak, B., Genga, R. M., Silverstein, N. J., Garber, M., & Maehr, R. (2015). Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nature Methods, 12(5), 401-403. https://doi.org/10.1038/nmeth.3325
  • Khan, S. H. (2019). Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application. Molecular Therapy Nucleic Acids, 16, 326-334. https://doi.org/10.1016/j.omtn.2019.02.027
  • Kikuchi, M., Morita, S., Wakamori, M., Sato, S., Uchikubo-Kamo, T., Suzuki, T., Dohmae, N., Shirouzu, M., & Umehara, T. (2023). Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nature Communication, 14(1), 4103. https://doi.org/10.1038/s41467-023-39735-4
  • Kim, J. M., Kim, K., Schmidt, T., Punj, V., Tucker, H., Rice, J. C., Ulmer, T. S., & An, W. (2015). Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Research, 43(18), 8868-8883. https://doi.org/10.1093/nar/gkv874
  • Kloet, S. L., Whiting, J. L., Gafken, P., Ranish, J., & Wang, E. H. (2012). Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Molecular and Cellular Biology, 32(16), 3358-3369. https://doi.org/10.1128/MCB.00416-12
  • Kwon, D. Y., Zhao, Y. T., Lamonica, J. M., & Zhou, Z. (2017). Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nature Communication, 8, 15315. https://doi.org/10.1038/ncomms15315
  • Lakshminarasimhan, R., & Liang, G. (2016). The Role of DNA Methylation in Cancer. Advances in Experimental Medicine and Biology, 945, 151-172. https://doi.org/10.1007/978-3-319-43624-1_7
  • Laufer, B. I., & Singh, S. M. (2015). Strategies for precision modulation of gene expression by epigenome editing: an overview. Epigenetics Chromatin, 8(1), 34. https://doi.org/10.1186/s13072-015-0023-7
  • Lee, H. B., Sundberg, B. N., Sigafoos, A. N., & Clark, K. J. (2016). Genome Engineering with TALE and CRISPR Systems in Neuroscience [Review]. Frontiers in Genetics, 7, 47. https://doi.org/10.3389/fgene.2016.00047
  • Lensch, S., Herschl, M. H., Ludwig, C. H., Sinha, J., Hinks, M. M., Mukund, A., Fujimori, T., & Bintu, L. (2022). Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. Elife, 11. https://doi.org/10.7554/eLife.75115
  • Li, H., Yang, Y., Hong, W., Huang, M., Wu, M., & Zhao, X. (2020a). Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 5(1), 1. https://doi.org/10.1038/s41392-019-0089-y
  • Li, K., Liu, Y., Cao, H., Zhang, Y., Gu, Z., Liu, X., Yu, A., Kaphle, P., Dickerson, K. E., Ni, M., & Xu, J. (2020b). Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communication, 11(1), 485. https://doi.org/10.1038/s41467-020-14362-5
  • Li, R., Xia, X., Wang, X., Sun, X., Dai, Z., Huo, D., Zheng, H., Xiong, H., He, A., & Wu, X. (2020c). Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biology, 18(11), e3000749. https://doi.org/10.1371/journal.pbio.3000749
  • Li, X., Li, C., & Sun, G. (2016). Histone Acetylation and Its Modifiers in the Pathogenesis of Diabetic Nephropathy. J Diabetes Res, 2016, 4065382. https://doi.org/10.1155/2016/4065382
  • Li, Y. (2021). Modern epigenetics methods in biological research. Methods, 187, 104-113. https://doi.org/10.1016/j.ymeth.2020.06.022
  • Liesenfelder, S., Elsafi Mabrouk, M. H., Iliescu, J., Baranda, M. V., Mizi, A., Perez-Correa, J. F., Wessiepe, M., Papantonis, A., & Wagner, W. (2025). Epigenetic editing at individual age-associated CpGs affects the genome-wide epigenetic aging landscape. Nature Aging, 5(6), 997-1009. https://doi.org/10.1038/s43587-025-00841-1
  • Liu, P., Chen, M., Liu, Y., Qi, L. S., & Ding, S. (2018). CRISPR-Based Chromatin Remodeling of the Endogenous Oct4 or Sox2 Locus Enables Reprogramming to Pluripotency. Cell Stem Cell, 22(2), 252-261 e254. https://doi.org/10.1016/j.stem.2017.12.001
  • Liu, R., Wu, J., Guo, H., Yao, W., Li, S., Lu, Y., Jia, Y., Liang, X., Tang, J., & Zhang, H. (2023). Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm, 4(3), e292. https://doi.org/10.1002/mco2.292
  • Liu, W., Zhang, S., & Wang, J. (2022). IFN-gamma, should not be ignored in SLE. Frontiers in Immunology, 13, 954706. https://doi.org/10.3389/fimmu.2022.954706
  • Loda, A., & Heard, E. (2019). Xist RNA in action: Past, present, and future. Plos Genetics, 15(9), e1008333. https://doi.org/10.1371/journal.pgen.1008333
  • Lodde, V., Murgia, G., Simula, E. R., Steri, M., Floris, M., & Idda, M. L. (2020). Long Noncoding RNAs and Circular RNAs in Autoimmune Diseases. Biomolecules, 10(7). https://doi.org/10.3390/biom10071044
  • Loscalzo, J., & Handy, D. E. (2014). Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference series). Pulmonary Circulation, 4(2), 169-174. https://doi.org/10.1086/675979
  • Lu, Y., Chan, Y. T., Tan, H. Y., Li, S., Wang, N., & Feng, Y. (2020). Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Molecular Cancer, 19(1), 79. https://doi.org/10.1186/s12943-020-01197-3
  • Lunnon, K., Smith, R., Hannon, E., De Jager, P. L., Srivastava, G., Volta, M., Troakes, C., Al-Sarraj, S., Burrage, J., Macdonald, R., Condliffe, D., Harries, L. W., Katsel, P., Haroutunian, V., Kaminsky, Z., Joachim, C., Powell, J., Lovestone, S., Bennett, D. A.,…Mill, J. (2014). Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nature Neuroscience, 17(9), 1164-1170. https://doi.org/10.1038/nn.3782
  • Ma, W., Wang, W., Zhao, L., Fan, J., Liu, L., Huang, L., Peng, B., Wang, J., Xu, B., Liu, H., Wu, D., & Zheng, Z. (2025). Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain. Bone Research, 13(1), 35. https://doi.org/10.1038/s41413-025-00416-1
  • Mabe, N. W., Perry, J. A., Malone, C. F., & Stegmaier, K. (2024). Pharmacological targeting of the cancer epigenome. Nature Cancer, 5(6), 844-865. https://doi.org/10.1038/s43018-024-00777-2
  • Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio, V. M., Tsai, S. Q., Ho, Q. H., Sander, J. D., Reyon, D., Bernstein, B. E., Costello, J. F., Wilkinson, M. F., & Joung, J. K. (2013a). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature Biotechnology, 31(12), 1137-1142. https://doi.org/10.1038/nbt.2726
  • Maeder, M. L., Angstman, J. F., Richardson, M. E., Linder, S. J., Cascio, V. M., Tsai, S. Q., Ho, Q. H., Sander, J. D., Reyon, D., Bernstein, B. E., Costello, J. F., Wilkinson, M. F., & Joung, J. K. (2013b). Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nature biotechnology, 31(12), 1137-+. https://doi.org/10.1038/nbt.2726
  • Martinez-Iglesias, O., Naidoo, V., Carrera, I., Corzo, L., & Cacabelos, R. (2023). Natural Bioactive Products as Epigenetic Modulators for Treating Neurodegenerative Disorders. Pharmaceuticals (Basel, Switzerland), 16(2). https://doi.org/10.3390/ph16020216
  • Martinez-Zamudio, R., & Ha, H. C. (2012). Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Molecular and Cellular Biology, 32(13), 2490-2502. https://doi.org/10.1128/MCB.06667-11
  • Matatiele, P., Tikly, M., Tarr, G., & Gulumian, M. (2015). DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis. Journal of Biomedical Science, 22(1), 34. https://doi.org/10.1186/s12929-015-0142-2
  • McGurk, L., Rifai, O. M., & Bonini, N. M. (2019). Poly(ADP-Ribosylation) in Age-Related Neurological Disease. Trends in Genetics, 35(8), 601-613. https://doi.org/10.1016/j.tig.2019.05.004
  • McPherson, R., & Tybjaerg-Hansen, A. (2016). Genetics of Coronary Artery Disease. Circulation Research, 118(4), 564-578. https://doi.org/10.1161/CIRCRESAHA.115.306566
  • Mendenhall, E. M., Williamson, K. E., Reyon, D., Zou, J. Y., Ram, O., Joung, J. K., & Bernstein, B. E. (2013). Locus-specific editing of histone modifications at endogenous enhancers. Nature Biotechnology, 31(12), 1133-1136. https://doi.org/10.1038/nbt.2701
  • Meriesh, H. A., Lerner, A. M., Chandrasekharan, M. B., & Strahl, B. D. (2020). The histone H4 basic patch regulates SAGA-mediated H2B deubiquitination and histone acetylation. Journal of Biological Chemistry, 295(19), 6561-6569. https://doi.org/10.1074/jbc.RA120.013196
  • Miao, F., Chen, Z., Zhang, L., Liu, Z., Wu, X., Yuan, Y. C., & Natarajan, R. (2012). Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry, 287(20), 16335-16345. https://doi.org/10.1074/jbc.M111.330373
  • Migliore, L., & Coppede, F. (2009). Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutation Research, 667(1-2), 82-97. https://doi.org/10.1016/j.mrfmmm.2008.10.011
  • Miller, S., Tsou, P. S., Coit, P., Gensterblum-Miller, E., Renauer, P., Rohraff, D. M., Kilian, N. C., Schonfeld, M., & Sawalha, A. H. (2019). Hypomethylation of STAT1 and HLA-DRB1 is associated with type-I interferon-dependent HLA-DRB1 expression in lupus CD8+ T cells. Annals of the Rheumatic Diseases, 78(4), 519-528. https://doi.org/10.1136/annrheumdis-2018-214323
  • Mirahmadi, M., Kahani, S. M., Sharifi-Zarchi, A., Firouzabadi, S. G., Behjati, F., & Garshasbi, M. (2025). Genetic Heterogeneity of Autism Spectrum Disorder: Identification of Five Novel Mutations (RIMS2, FOXG1, AUTS2, ZCCHC17, and SPTBN5) in Iranian Families via Whole-Exome and Whole-Genome Sequencing. Biochemical Genetics. https://doi.org/10.1007/s10528-025-11226-9
  • Mock, U., Riecken, K., Berdien, B., Qasim, W., Chan, E., Cathomen, T., & Fehse, B. (2014). Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Scientific Reports, 4, 6409. https://doi.org/10.1038/srep06409
  • Morgan, M. T., & Wolberger, C. (2017). Recognition of ubiquitinated nucleosomes. Current Opinion in Structural Biology, 42, 75-82. https://doi.org/10.1016/j.sbi.2016.11.016
  • Morlando, M., & Fatica, A. (2018). Alteration of Epigenetic Regulation by Long Noncoding RNAs in Cancer. International Journal of Molecular Sciences, 19(2). https://doi.org/10.3390/ijms19020570
  • Nakamura, M., Gao, Y., Dominguez, A. A., & Qi, L. S. (2021). CRISPR technologies for precise epigenome editing. Nature Cell Biology, 23(1), 11-22. https://doi.org/10.1038/s41556-020-00620-7
  • Noori-Zadeh, A., Mesbah-Namin, S. A., & Saboor-Yaraghi, A. A. (2017). Epigenetic and gene expression alterations of FOXP3 in the T cells of EAE mouse model of multiple sclerosis. Journal of the Neurological Sciences, 375, 203-208. https://doi.org/10.1016/j.jns.2017.01.060
  • Nunez, J. K., Chen, J., Pommier, G. C., Cogan, J. Z., Replogle, J. M., Adriaens, C., Ramadoss, G. N., Shi, Q., Hung, K. L., Samelson, A. J., Pogson, A. N., Kim, J. Y. S., Chung, A., Leonetti, M. D., Chang, H. Y., Kampmann, M., Bernstein, B. E., Hovestadt, V., Gilbert, L. A., & Weissman, J. S. (2021). Genome-wide programmable transcriptionalmemory by CRISPR-based epigenome editing. Cell, 184(9), 2503-2519 e2517. https://doi.org/10.1016/j.cell.2021.03.025
  • O'Geen, H., Ren, C., Nicolet, C. M., Perez, A. A., Halmai, J., Le, V. M., Mackay, J. P., Farnham, P. J., & Segal, D. J. (2017). dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Research, 45(17), 9901-9916. https://doi.org/10.1093/nar/gkx578
  • Ordovas, J. M., & Smith, C. E. (2010). Epigenetics and cardiovascular disease. Nature Reviews: Cardiology, 7(9), 510-519. https://doi.org/10.1038/nrcardio.2010.104
  • Palazzo, L., Mikolcevic, P., Mikoc, A., & Ahel, I. (2019). ADP-ribosylation signalling and human disease. Open Biology, 9(4), 190041. https://doi.org/10.1098/rsob.190041
  • Pang, K., Wang, W., Qin, J. X., Shi, Z. D., Hao, L., Ma, Y. Y., Xu, H., Wu, Z. X., Pan, D., Chen, Z. S., & Han, C. H. (2022). Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (2020), 3(4), e175. https://doi.org/10.1002/mco2.175
  • Pedre, X., Mastronardi, F., Bruck, W., Lopez-Rodas, G., Kuhlmann, T., & Casaccia, P. (2011). Changed histone acetylation patterns in normal-appearing white matter and early multiple sclerosis lesions. Journal of Neuroscience, 31(9), 3435-3445. https://doi.org/10.1523/JNEUROSCI.4507-10.2011
  • Policarpi, C., Munafo, M., Tsagkris, S., Carlini, V., & Hackett, J. A. (2024). Systematic epigenome editing captures the context-dependent instructive function of chromatin modifications. Nature Genetics, 56(6), 1168-1180. https://doi.org/10.1038/s41588-024-01706-w
  • Poole, R. M. (2014). Belinostat: first global approval. Drugs, 74(13), 1543-1554. https://doi.org/10.1007/s40265-014-0275-8
  • Porcheron, C., Le Devehat, M., Roubtsova, A., Bayat, H., Evagelidis, A., Jafarzadeh, L., Sachan, V., Labrecque, N., Fonta Holder, A., Susan-Resiga, D., Essalmani, R., Boudreau, G., Prat, A., Cusseddu, R., Cote, J. F., Khatib, A. M., Delisle, J. S., & Seidah, N. G. (2025). Blockade of colon cancer metastasis via single and double silencing of PCSK7/PCSK9: enhanced T cells cytotoxicity in mouse and human. Journal of Immunotherapy of Cancer, 13(6). https://doi.org/10.1136/jitc-2024-011364
  • Qin, S., Xie, B., Wang, Q., Yang, R., Sun, J., Hu, C., Liu, S., Tao, Y., & Xiao, D. (2024). New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (2020), 5(6), e551. https://doi.org/10.1002/mco2.551
  • Qin, W., Scicluna, B. P., & van der Poll, T. (2021). The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection [Review]. Frontiers in Immunology, 12, 696280. https://doi.org/10.3389/fimmu.2021.696280
  • Ramzan, F., Vickers, M. H., & Mithen, R. F. (2021). Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22095047
  • Rasmi, Y., Shokati, A., Hassan, A., Aziz, S. G., Bastani, S., Jalali, L., Moradi, F., & Alipour, S. (2023). The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neuroscience Reports, 14, 28-37. https://doi.org/10.1016/j.ibneur.2022.12.002
  • Richard-Miceli, C., & Criswell, L. A. (2012). Emerging patterns of genetic overlap across autoimmune disorders. Genome Medicine, 4(1), 6. https://doi.org/10.1186/gm305
  • Richardson, B. (2003). DNA methylation and autoimmune disease. Clinical Immunology, 109(1), 72-79. https://doi.org/10.1016/s1521-6616(03)00206-7
  • Robusti, G., Vai, A., Bonaldi, T., & Noberini, R. (2022). Investigating pathological epigenetic aberrations by epi-proteomics. Clinical Epigenetics, 14(1), 145. https://doi.org/10.1186/s13148-022-01371-y
  • Rosenblum, M. D., Remedios, K. A., & Abbas, A. K. (2015). Mechanisms of human autoimmunity. Journal of Clinical Investigation, 125(6), 2228-2233. https://doi.org/10.1172/JCI78088
  • Roth, G. V., Gengaro, I. R., & Qi, L. S. (2024). Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chemical Biology. https://doi.org/10.1016/j.chembiol.2024.07.007
  • Ryu, H. Y., & Hochstrasser, M. (2021). Histone sumoylation and chromatin dynamics. Nucleic Acids Research, 49(11), 6043-6052. https://doi.org/10.1093/nar/gkab280
  • Ryu, H. Y., Zhao, D., Li, J., Su, D., & Hochstrasser, M. (2020). Histone sumoylation promotes Set3 histone-deacetylase complex-mediated transcriptional regulation. Nucleic Acids Research, 48(21), 12151-12168. https://doi.org/10.1093/nar/gkaa1093
  • Saito, M., Xu, P., Faure, G., Maguire, S., Kannan, S., Altae-Tran, H., Vo, S., Desimone, A., Macrae, R. K., & Zhang, F. (2023). Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature, 620(7974), 660-668. https://doi.org/10.1038/s41586-023-06356-2
  • Saito, Y., Saito, H., Liang, G., & Friedman, J. M. (2014). Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review. Clinical Reviews in Allergy & Immunology, 47(2), 128-135. https://doi.org/10.1007/s12016-013-8401-z
  • Salesi, M., Dehabadi, M. H., Salehi, R., Salehi, A., & Pakzad, B. (2022). Differentially methylation of IFI44L gene promoter in Iranian patients with systemic lupus erythematosus and rheumatoid arthritis. Molecular Biology Reports, 49(4), 3065-3072. https://doi.org/10.1007/s11033-022-07134-5
  • Salmaninejad, A., Jafari Abarghan, Y., Bozorg Qomi, S., Bayat, H., Yousefi, M., Azhdari, S., Talebi, S., & Mojarrad, M. (2021). Common therapeutic advances for Duchenne muscular dystrophy (DMD). International Journal of Neuroscience, 131(4), 370-389. https://doi.org/10.1080/00207454.2020.1740218
  • Salmaninejad, A., Valilou, S. F., Bayat, H., Ebadi, N., Daraei, A., Yousefi, M., Nesaei, A., & Mojarrad, M. (2018). Duchenne muscular dystrophy: an updated review of common available therapies. International Journal of Neuroscience, 128(9), 854-864. https://doi.org/10.1080/00207454.2018.1430694
  • Salvatori, B., Biscarini, S., & Morlando, M. (2020). Non-coding RNAs in Nervous System Development and Disease [Review]. Front Cell Dev Biol, 8, 273. https://doi.org/10.3389/fcell.2020.00273
  • Samie, M., Parman, T., Jalan, M., Lee, J., Dunn, P., Eshleman, J., Vidales, D. B., Holter, J., Jones, B., Pan, Y., Falaleeva, M., Hinkley, S., Goodwin, A., Chen, T., Bhardwaj, S., Ward, A., Trias, M., Chikere, A., Som, M.,…Pooler, A. (2024). Potent and selective repression of SCN9A by engineered zinc finger repressors for the treatment of neuropathic pain. BioRxiv. https://doi.org/10.1101/2024.09.06.609976
  • San-Miguel, J. F., Hungria, V. T., Yoon, S. S., Beksac, M., Dimopoulos, M. A., Elghandour, A., Jedrzejczak, W. W., Gunther, A., Nakorn, T. N., Siritanaratkul, N., Corradini, P., Chuncharunee, S., Lee, J. J., Schlossman, R. L., Shelekhova, T., Yong, K., Tan, D., Numbenjapon, T., Cavenagh, J. D., Richardson, P. G. (2014). Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: a multicentre, randomised, double-blind phase 3 trial. Lancet Oncology, 15(11), 1195-1206. https://doi.org/10.1016/S1470-2045(14)70440-1
  • Sanjana, N. E., Cong, L., Zhou, Y., Cunniff, M. M., Feng, G., & Zhang, F. (2012). A transcription activator-like effector toolbox for genome engineering. Nature Protocols, 7(1), 171-192. https://doi.org/10.1038/nprot.2011.431
  • Saunderson, E. A., Encabo, H. H., Devis, J., Rouault-Pierre, K., Piganeau, M., Bell, C. G., Gribben, J. G., Bonnet, D., & Ficz, G. (2023). CRISPR/dCas9 DNA methylation editing is heritable during human hematopoiesis and shapes immune progeny. Proceedings of the National Academy of Sciences of the United States of America, 120(34), e2300224120. https://doi.org/10.1073/pnas.2300224120 Seem, K., Kaur, S., Kumar, S., & Mohapatra, T. (2024). Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Critical Reviews in Biochemistry and Molecular Biology, 59(1-2), 69-98. https://doi.org/10.1080/10409238.2024.2320659
  • Shah, R. R. (2019). Safety and Tolerability of Histone Deacetylase (HDAC) Inhibitors in Oncology. Drug Safety, 42(2), 235-245.https://doi.org/10.1007/s40264-018-0773-9
  • Shams, F., Bayat, H., Mohammadian, O., Mahboudi, S., Vahidnezhad, H., Soosanabadi, M., & Rahimpour, A. (2022). Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. Bioimpacts, 12(4), 371-391. https://doi.org/10.34172/bi.2022.23871
  • Sharma, V. K., Mehta, V., & Singh, T. G. (2020). Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Current Neuropharmacology, 18(8), 740-753. https://doi.org/10.2174/1570159X18666200128125641
  • Shi, L., Li, S., Zhu, R., Lu, C., Xu, X., Li, C., Huang, X., Zhao, X., Mao, F., & Li, K. (2025). CRISPRepi: a multi-omic atlas for CRISPR-based epigenome editing. Nucleic Acids Research, 53(D1), D901-D913. https://doi.org/10.1093/nar/gkae1039
  • Shrivastava, S., Ray, R. M., Holguin, L., Echavarria, L., Grepo, N., Scott, T. A., Burnett, J., & Morris, K. V. (2021). Exosome-mediated stable epigenetic repression of HIV-1. Nature Communication, 12(1), 5541. https://doi.org/10.1038/s41467-021-25839-2
  • Shukla, S., & Tekwani, B. L. (2020). Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Frontiers in Pharmacology, 11, 537. https://doi.org/10.3389/fphar.2020.00537
  • Siddiqi, K. Z., Wilhelm, T. R., Ulff-Moller, C. J., & Jacobsen, S. (2021). Cluster of highly expressed interferon-stimulated genes associate more with African ancestry than disease activity in patients with systemic lupus erythematosus. A systematic review of cross-sectional studies. Translational Research: The Journal of Laboratory and Clinical Medicine, 238, 63-75. https://doi.org/10.1016/j.trsl.2021.07.006
  • Singh, J., & Santosh, P. (2025). Molecular Insights into Neurological Regression with a Focus on Rett Syndrome-A Narrative Review. International Journal of Molecular Sciences, 26(11). https://doi.org/10.3390/ijms26115361
  • Skeens, E., Sinha, S., Ahsan, M., D'Ordine, A. M., Jogl, G., Palermo, G., & Lisi, G. P. (2024). High-fidelity, hyper-accurate, and evolved mutants rewire atomic-level communication in CRISPR-Cas9. Science Advances, 10(10), eadl1045. https://doi.org/10.1126/sciadv.adl1045
  • Snowden, A. W., Gregory, P. D., Case, C. C., & Pabo, C. O. (2002). Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Current Biology, 12(24), 2159-2166. https://doi.org/10.1016/s0960-9822(02)01391-x
  • Song, S., De, S., Nelson, V., Chopra, S., LaPan, M., Kampta, K., Sun, S., He, M., Thompson, C. D., Li, D., Shih, T., Tan, N., Al-Abed, Y., Capitle, E., Aranow, C., Mackay, M., Clapp, W. L., & Barnes, B. J. (2020). Inhibition of IRF5 hyperactivation protects from lupus onset and severity. Journal of Clinical Investigation, 130(12), 6700-6717. https://doi.org/10.1172/JCI120288
  • Sum, H., & Brewer, A. C. (2023). Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Frontiers in Cardiovascular Medicine, 10, 1183181. https://doi.org/10.3389/fcvm.2023.1183181
  • Syding, L. A., Nickl, P., Kasparek, P., & Sedlacek, R. (2020). CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Cells, 9(4). https://doi.org/10.3390/cells9040993 Tadic, V., Josipovic, G., Zoldos, V., & Vojta, A. (2019). CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 164-165, 109-119. https://doi.org/10.1016/j.ymeth.2019.05.003
  • Tang, C., Li, Y., Lin, X., Ye, J., Li, W., He, Z., Li, F., & Cai, X. (2014). Hypomethylation of interleukin 6 correlates with renal involvement in systemic lupus erythematosus. Central European Journal of Immunology, 39(2), 203-208. https://doi.org/10.5114/ceji.2014.43724
  • Tang, H., Wang, D., & Shu, Y. (2022). Structural insights into Cas9 mismatch: promising for development of high-fidelity Cas9 variants. Signal Transduction and Targeted Therapy, 7(1), 271. https://doi.org/10.1038/s41392-022-01139-z
  • Tenchov, R., Sasso, J. M., Wang, X., Liaw, W. S., Chen, C. A., & Zhou, Q. A. (2022). Exosomes horizontal line Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS Nano, 16(11), 17802-17846. https://doi.org/10.1021/acsnano.2c08774
  • Tremblay, F., Xiong, Q., Shah, S. S., Ko, C. W., Kelly, K., Morrison, M. S., Giancarlo, C., Ramirez, R. N., Hildebrand, E. M., Voytek, S. B., El Sebae, G. K., Wright, S. H., Lofgren, L., Clarkson, S., Waters, C., Linder, S. J., Liu, S., Eom, T., Parikh, S., Jaffe, A. B. (2025). A potent epigenetic editor targeting human PCSK9 for durable reduction of low-density lipoprotein cholesterol levels. Nature Medicine, 31(4), 1329-1338. https://doi.org/10.1038/s41591-025-03508-x
  • Udali, S., Guarini, P., Moruzzi, S., Choi, S. W., & Friso, S. (2013). Cardiovascular epigenetics: from DNA methylation to microRNAs. Molecular Aspects of Medicine, 34(4), 883-901. https://doi.org/10.1016/j.mam.2012.08.001
  • Ueda, J., Yamazaki, T., & Funakoshi, H. (2023). Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. International Journal of Molecular Sciences, 24(5). https://doi.org/10.3390/ijms24054778
  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews: Genetics, 11(9), 636-646. https://doi.org/10.1038/nrg2842
  • van Esch, A. P., Prudence, S. M. M., Contesini, F. J., Gerhartz, B., Royle, K. E., & Mortensen, U. H. (2025). A CRISPR Cas12a/Cpf1 strategy to facilitate robust multiplex gene editing in Aspergillus Niger. Fungal Biology and Biotechnology, 12(1), 5. https://doi.org/10.1186/s40694-025-00196-7
  • Vukic, M., & Daxinger, L. (2019). DNA methylation in disease: Immunodeficiency, Centromeric instability, Facial anomalies syndrome. Essays in Biochemistry, 63(6), 773-783. https://doi.org/10.1042/EBC20190035
  • Wardowska, A. (2020). The epigenetic face of lupus: Focus on antigen-presenting cells. International Immunopharmacology, 81, 106262. https://doi.org/10.1016/j.intimp.2020.106262
  • Whittaker, M. N., Testa, L. C., Quigley, A., Jindal, I., Cortez-Alvarado, S. V., Qu, P., Yang, Y., Alameh, M. G., Musunuru, K., & Wang, X. (2023). Epigenome Editing Durability Varies Widely Across Cardiovascular Disease Target Genes. Arteriosclerosis, Thrombosis, and Vascular Biology, 43(10), 2075-2077. https://doi.org/10.1161/ATVBAHA.123.319748
  • Woodward, E. A., Wang, E., Wallis, C., Sharma, R., Tie, A. W. J., Murthy, N., & Blancafort, P. (2024). Protocol for Delivery of CRISPR/dCas9 Systems for Epigenetic Editing into Solid Tumors Using Lipid Nanoparticles Encapsulating RNA. Methods in Molecular Biology, 2842, 267-287. https://doi.org/10.1007/978-1-0716-4051-7_14
  • Wu, X., Zhang, X., Huang, B., Han, J., & Fang, H. (2023a). Advances in biological functions and mechanisms of histone variants in plants. Frontiers in Genetics, 14, 1229782. https://doi.org/10.3389/fgene.2023.1229782
  • Wu, Y. L., Lin, Z. J., Li, C. C., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., Li, F., Yuan, L. Q., & Li, Z. H. (2023b). Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy, 8(1), 98. https://doi.org/10.1038/s41392-023-01333-7
  • Xiao, L., Xiao, W., & Lin, S. (2022). Potential biomarkers for active renal involvement in systemic lupus erythematosus patients. Frontiers in Medicine, 9, 995103. https://doi.org/10.3389/fmed.2022.995103
  • Xu, Y., Yang, Y., Wang, Z., Sjostrom, M., Jiang, Y., Tang, Y., Cheng, S., Deng, S., Wang, C., Gonzalez, J., Johnson, N. A., Li, X., Li, X., Metang, L. A., Mukherji, A., Xu, Q., Tirado, C. R., Wainwright, G., Yu, X.,…Mu, P. (2024). ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer. Cancer Discovery, 14(8), 1496-1521. https://doi.org/10.1158/2159-8290.CD-23-0539
  • Yang, X., Liu, M., Li, M., Zhang, S., Hiju, H., Sun, J., Mao, Z., Zheng, M., & Feng, B. (2020). Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 19(1), 64. https://doi.org/10.1186/s12943-020-01159-9
  • Younesian, S., Yousefi, A. M., Momeny, M., Ghaffari, S. H., & Bashash, D. (2022). The DNA Methylation in Neurological Diseases. Cells, 11(21). https://doi.org/10.3390/cells11213439
  • Zhan, Y., Guo, Y., & Lu, Q. (2016). Aberrant Epigenetic Regulation in the Pathogenesis of Systemic Lupus Erythematosus and Its Implication in Precision Medicine. Cytogenetic and Genome Research, 149(3), 141-155. https://doi.org/10.1159/000448793
  • Zhang, J., Chen, L., Zhang, J., & Wang, Y. (2019). Drug Inducible CRISPR/Cas Systems. Computational and Structural Biotechnology Journal, 17, 1171-1177. https://doi.org/10.1016/j.csbj.2019.07.015
  • Zhang, J., Chen, L. M., Zou, Y., Zhang, S., Xiong, F., & Wang, C. Y. (2021). Implication of epigenetic factors in the pathogenesis of type 1 diabetes. Chinese Medical Journal (Engl.), 134(9), 1031-1042. https://doi.org/10.1097/CM9.0000000000001450
  • Zhang, R., Yao, T., Fan, M., Jiang, X., Wang, K., Cui, M., Bing, K., & Xia, X. (2025). Precision scalpels for the epigenome: next-gen editing tools in targeted therapies. Frontiers in Medicine, 12, 1613722. https://doi.org/10.3389/fmed.2025.1613722
  • Zhang, Y., Liu, L., Guo, S., Song, J., Zhu, C., Yue, Z., Wei, W., & Yi, C. (2017). Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition. Nature Communication, 8(1), 901. https://doi.org/10.1038/s41467-017-00860-6
  • Zhao, J., Wei, K., Chang, C., Xu, L., Jiang, P., Guo, S., Schrodi, S. J., & He, D. (2022). DNA Methylation of T Lymphocytes as a Therapeutic Target: Implications for Rheumatoid Arthritis Etiology. Frontiers in Immunology, 13, 863703. https://doi.org/10.3389/fimmu.2022.863703
  • Zhao, Q., Ma, Y., Li, Z., Zhang, K., Zheng, M., & Zhang, S. (2020). The Function of SUMOylation and Its Role in the Development of Cancer Cells under Stress Conditions: A Systematic Review. Stem Cells International, 2020, 8835714. https://doi.org/10.1155/2020/8835714
  • Zhou, H., He, X., Xiong, Y., Gong, Y., Zhang, Y., Li, S., Hu, R., Li, Y., Zhang, X., Zhou, X., Zhu, J., Yang, Y., & Liu, M. (2025). Structural insights into a highly flexible zinc finger module unravel INSM1 function in transcription regulation. Nature Communication, 16(1), 2162.https://doi.org/10.1038/s41467-025-57478-2
There are 171 citations in total.

Details

Primary Language English
Subjects Epigenetics
Journal Section Review
Authors

Maryam Mirahmadi This is me 0009-0003-5735-693X

Nader Hashemi This is me 0000-0002-5241-6505

Sayed Hassan Tabatabaee This is me 0009-0008-7162-0860

Forough Shams This is me 0000-0001-5862-2679

Yong Teng This is me 0000-0002-1856-7289

Azam Rahimpour This is me 0000-0002-3296-5881

Project Number Grant Number 29763, Ethics Code: IR.SBMU.RETECH.REC.1400.655
Early Pub Date November 25, 2025
Publication Date December 1, 2025
Submission Date February 11, 2025
Acceptance Date October 20, 2025
Published in Issue Year 2026 Volume: 35 Issue: 2

Cite

APA Mirahmadi, M., Hashemi, N., Tabatabaee, S. H., … Shams, F. (2025). Epigenome Editing: Emerging Tools, Therapeutic Applications, and Challenges in Human Disease Treatment. Biotech Studies, 35(2), 13-34.


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services