Research Article
BibTex RIS Cite

Generative AI Performance Benchmarking: The Impact of ChatGPT and DeepSeek on User Interactions

Year 2025, Volume: 7 Issue: 1, 1 - 39, 30.06.2025
https://doi.org/10.53694/bited.1710862

Abstract

This study aims to evaluate and compare the performance and impact of generative AI models
ChatGPT and DeepSeek on user interactions through a comparative analysis. The research utilizes
a synthetic dataset obtained from Kaggle.com, encompassing over 10,000 user interaction records
collected between July 2023 and February 2025. Variables such as response accuracy, session
duration, and user satisfaction were analyzed using machine learning algorithms (regression,
decision trees, clustering) and statistical tests (t-test, ANOVA). The findings indicate that DeepSeek
received higher user ratings particularly in technical tasks (e.g., debugging, code optimization),
while ChatGPT stood out in areas such as content generation and education. DeepSeek users
generally reported higher experience scores and ratings, along with lower abandonment rates. The
study highlights the strengths, limitations, and user interaction dynamics of both platforms,
emphasizing that performance varies depending on the context of use and underlining the
importance of data privacy and ethical considerations.

Ethical Statement

The Ethical Committee Approval: This research does not require an ethics committee decision, since data in an international database open to all researchers are used.

References

  • Acemoglu, D., Autor, D., & Johnson, S. (2023). Can we have pro-worker ai. https://shapingwork.mit.edu/wp-content/uploads/2023/09/Pro-Worker-AI-Policy-Memo.pdf
  • Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3).
  • Al-Abdullatif, A. M., & Alsubaie, M. A. (2024). ChatGPT in learning: Assessing students’ use intentions through the lens of perceived value and the influence of AI literacy. Behavioral Sciences, 14(9), 845.
  • Al-Busaidi, A. S., Raman, R., Hughes, L., Albashrawi, M. A., Malik, T., Dwivedi, Y. K., ... & Walton, P. (2024). Redefining boundaries in innovation and knowledge domains: Investigating the impact of generative artificial intelligence on copyright and intellectual property rights. Journal of Innovation & Knowledge, 9(4), 100630.
  • Alkaissi, H., & McFarlane, S. I. (2023). Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus, 15(2).
  • Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M., Shleifer, S., & Stoyanov, V. (2021). Efficient large scale language modeling with mixtures of experts. https://arxiv.org/pdf/2112.10684
  • Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., & Pasehvar, M. (2023). ChatGPT: Applications, opportunities, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS), 274-279.
  • Bell, R., & Bell, H. (2023). Entrepreneurship education in the era of generative artificial intelligence. Entrepreneurship Education, 6(3), 229–244. https://doi.org/10.1007/s41959-023-00099-x Borgesius, F. (2018). Discrimination, artificial intelligence, and algorithmic decision-making. Council of Europe, Directorate General of Democracy.
  • BytePlus. (2025). DeepSeek-Coder-V2: Revolutionizing AI-powered code generation. https://www.byteplus.com/en/topic/375561?title=deepseek-coder-v2-revolutionizing-ai-powered-code-generation
  • Chein, J., Martinez, S., & Barone, A. (2024). Can human intelligence safeguard against artificial intelligence? Exploring individual differences in the discernment of human from AI texts. Research Square, rs-3. CTOL Digital. (2025). Is DeepSeek Truly Open Source or Just Following Industry Norms? https://www.ctol.digital/news/is-deepseek-truly-open-source-or-following-industry-norms/ Dataloop. (t.y.). DeepSeek Coder V2 Instruct · Models. https://dataloop.ai/library/model/deepseek-ai_deepseek-coder-v2-instruct/
  • DeepSeek R1: DeepSeek-V3. (t.y.). https://deepseeksr1.com/v3/
  • DeepSeek-AI. (2024). DeepSeek-V3 Technical Report. https://arxiv.org/pdf/2412.19437
  • DeepSeek-Coder. (t.y.). DeepSeek Coder. https://github.com/deepseek-ai/DeepSeek-Coder
  • DeepSeek-R1. (t.y.). DeepSeek-R1 Training Overview. https://github.com/deepseek-ai/DeepSeek-R1 DeepSeek-V3. (t.y.). DeepSeek-V3. https://github.com/deepseek-ai/DeepSeek-V3
  • Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., ... & Cui, C. (2022, June). Glam: Efficient scaling of language models with mixture-of-experts. https://arxiv.org/pdf/2112.06905
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management.
  • Eren, F., Dülek, L. N., Uraz, Ö. A., Kuşcu, B., & Sakallı, M. (2024). Yapay zeka endeksi kapsamında ülke bazlı yapay zeka politika stratejilerinin etkinliği: Performans ve verimlilik değerlendirmesi incelenmesi. Bilgi ve İletişim Teknolojileri Dergisi, 6(2), 113-148.
  • Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57-63.
  • Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., ... & Liang, W. (2024). DeepSeek-Coder: When the large language model meets programming -- The rise of code intelligence. https://arxiv.org/pdf/2401.14196
  • Gupta, M. (2025). RLHF (OpenAI) vs Simple RL (DeepSeek). Medium. https://medium.com/data-science-in-your-pocket/rlhf-openai-vs-simple-rl-deepseek-93054cb509a4
  • Hariri, W. (2023). Unlocking the potential of ChatGPT: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing. https://arxiv.org/abs/2304.02017
  • IBM. (2025a). DeepSeek: sorting through the hype. https://www.ibm.com/think/topics/deepseek
  • IBM. (2025b). DeepSeek's reasoning AI shows power of small models, efficiently. https://www.ibm.com/think/news/deepseek-r1-ai
  • Information Commissioner's Office (ICO). (2023). Guidance on AI and data protection. ICO.
  • Liu, H., Zhou, Y., Li, M., Yuan, C., & Tan, C. (2024). Literature meets data: A synergistic approach to hypothesis generation. https://arxiv.org/pdf/2410.17309
  • Manik, M. M. H. (2025). ChatGPT vs. DeepSeek: A comparative study on AI-Based code generation. https://arxiv.org/pdf/2502.18467
  • Markov, T., Zhang, C., Agarwal, S., Eloundou, T., Lee, T., Adler, S., Jiang, A., & Weng, L. (2023). New and improved content moderation tooling. https://openai.com/blog/new-and-improved-content-moderation-tooling/
  • Mesko, B. (2017). The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development, 2(5), 239-241.
  • Mogavi, R. H., Deng, C., Kim, J. J., Zhou, P., Kwon, Y. D., Metwally, A. H. S., ... & Hui, P. (2024). ChatGPT in education: A blessing or a curse? A qualitative study exploring early adopters’ utilization and perceptions. Computers in Human Behavior: Artificial Humans, 2(1).
  • Nazir, A., & Wang, Z. (2023). A comprehensive survey of ChatGPT: Advancements, applications, prospects, and challenges. Meta-radiology.
  • Neptune.ai (2025). Reinforcement learning from human feedback for LLMs. https://neptune.ai/blog/reinforcement-learning-from-human-feedback-for-llms OpenAI. (2023). GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. https://arxiv.org/pdf/2203.02155
  • Qawqzeh, Y. (2024). Exploring the influence of student interaction with ChatGPT on critical thinking, problem solving, and creativity. International Journal of Information and Education Technology, 14(4), 596-601.
  • Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154.
  • Reuters. (2024). Italy fines OpenAI 15 million euros over privacy rules breach. Reuters. https://www.reuters.com/technology/italy-fines-openai-15-million-euros-over-privacy-rules-breach-2024-12-20/ Rivas, P., & Zhao, L. (2023). Marketing with chatgpt: Navigating the ethical terrain of gpt-based chatbot technology. AI, 4(2), 375-384.
  • Rozado, D. (2023). The political biases of ChatGPT. Social Sciences, 12(3), 148.

Üretken Yapay Zeka Performans Kıyaslaması: ChatGPT ve DeepSeek'in Kullanıcı Etkileşimleri Üzerindeki Etkisi

Year 2025, Volume: 7 Issue: 1, 1 - 39, 30.06.2025
https://doi.org/10.53694/bited.1710862

Abstract

Bu çalışma, üretken yapay zekâ modelleri olan ChatGPT ve DeepSeek'in kullanıcı etkileşimleri
üzerindeki performansını ve etkisini karşılaştırmalı bir analizle değerlendirmeyi amaçlamaktadır.
Araştırmada, Kaggle.com'dan temin edilen ve Temmuz 2023 ile Şubat 2025 arasını kapsayan,
10.000'den fazla kullanıcı etkileşim verisi içeren sentetik bir veri seti kullanılmıştır. Makine
öğrenmesi algoritmaları (regresyon, karar ağaçları, kümeleme) ve istatistiksel testler (t-test,
ANOVA) aracılığıyla yanıt doğruluğu, oturum süresi, kullanıcı memnuniyeti gibi değişkenler
analiz edilmiştir. Bulgular, DeepSeek'in özellikle teknik görevlerde (hata ayıklama, kod
optimizasyonu) daha yüksek kullanıcı derecelendirmeleri aldığını, ChatGPT'nin ise içerik üretimi
ve eğitim gibi alanlarda öne çıktığını göstermiştir. DeepSeek kullanıcıları genel olarak daha
yüksek deneyim puanları ve derecelendirmeler bildirirken, daha düşük terk etme oranlarına sahip
olduğu gözlemlenmiştir. Çalışma, her iki platformun güçlü yönlerini, sınırlılıklarını ve kullanıcı
etkileşim dinamiklerini ortaya koyarak, platformların kullanım bağlamına göre performans
farklılıkları sergilediğini ve veri gizliliği ile etik konuların önemli olduğunu vurgulamaktadır.

Ethical Statement

Etik kurul kararı: Bu araştırmada, tüm araştırmacılara açık, uluslararası veri tabanında yer alan veriler kullanıldığından etik kurul kararı gerektirmemektedir.

References

  • Acemoglu, D., Autor, D., & Johnson, S. (2023). Can we have pro-worker ai. https://shapingwork.mit.edu/wp-content/uploads/2023/09/Pro-Worker-AI-Policy-Memo.pdf
  • Adiguzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology, 15(3).
  • Al-Abdullatif, A. M., & Alsubaie, M. A. (2024). ChatGPT in learning: Assessing students’ use intentions through the lens of perceived value and the influence of AI literacy. Behavioral Sciences, 14(9), 845.
  • Al-Busaidi, A. S., Raman, R., Hughes, L., Albashrawi, M. A., Malik, T., Dwivedi, Y. K., ... & Walton, P. (2024). Redefining boundaries in innovation and knowledge domains: Investigating the impact of generative artificial intelligence on copyright and intellectual property rights. Journal of Innovation & Knowledge, 9(4), 100630.
  • Alkaissi, H., & McFarlane, S. I. (2023). Artificial hallucinations in ChatGPT: implications in scientific writing. Cureus, 15(2).
  • Artetxe, M., Bhosale, S., Goyal, N., Mihaylov, T., Ott, M., Shleifer, S., & Stoyanov, V. (2021). Efficient large scale language modeling with mixtures of experts. https://arxiv.org/pdf/2112.10684
  • Bahrini, A., Khamoshifar, M., Abbasimehr, H., Riggs, R. J., Esmaeili, M., Majdabadkohne, R. M., & Pasehvar, M. (2023). ChatGPT: Applications, opportunities, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS), 274-279.
  • Bell, R., & Bell, H. (2023). Entrepreneurship education in the era of generative artificial intelligence. Entrepreneurship Education, 6(3), 229–244. https://doi.org/10.1007/s41959-023-00099-x Borgesius, F. (2018). Discrimination, artificial intelligence, and algorithmic decision-making. Council of Europe, Directorate General of Democracy.
  • BytePlus. (2025). DeepSeek-Coder-V2: Revolutionizing AI-powered code generation. https://www.byteplus.com/en/topic/375561?title=deepseek-coder-v2-revolutionizing-ai-powered-code-generation
  • Chein, J., Martinez, S., & Barone, A. (2024). Can human intelligence safeguard against artificial intelligence? Exploring individual differences in the discernment of human from AI texts. Research Square, rs-3. CTOL Digital. (2025). Is DeepSeek Truly Open Source or Just Following Industry Norms? https://www.ctol.digital/news/is-deepseek-truly-open-source-or-following-industry-norms/ Dataloop. (t.y.). DeepSeek Coder V2 Instruct · Models. https://dataloop.ai/library/model/deepseek-ai_deepseek-coder-v2-instruct/
  • DeepSeek R1: DeepSeek-V3. (t.y.). https://deepseeksr1.com/v3/
  • DeepSeek-AI. (2024). DeepSeek-V3 Technical Report. https://arxiv.org/pdf/2412.19437
  • DeepSeek-Coder. (t.y.). DeepSeek Coder. https://github.com/deepseek-ai/DeepSeek-Coder
  • DeepSeek-R1. (t.y.). DeepSeek-R1 Training Overview. https://github.com/deepseek-ai/DeepSeek-R1 DeepSeek-V3. (t.y.). DeepSeek-V3. https://github.com/deepseek-ai/DeepSeek-V3
  • Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu, Y., ... & Cui, C. (2022, June). Glam: Efficient scaling of language models with mixture-of-experts. https://arxiv.org/pdf/2112.06905
  • Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management.
  • Eren, F., Dülek, L. N., Uraz, Ö. A., Kuşcu, B., & Sakallı, M. (2024). Yapay zeka endeksi kapsamında ülke bazlı yapay zeka politika stratejilerinin etkinliği: Performans ve verimlilik değerlendirmesi incelenmesi. Bilgi ve İletişim Teknolojileri Dergisi, 6(2), 113-148.
  • Firat, M. (2023). What ChatGPT means for universities: Perceptions of scholars and students. Journal of Applied Learning and Teaching, 6(1), 57-63.
  • Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., ... & Liang, W. (2024). DeepSeek-Coder: When the large language model meets programming -- The rise of code intelligence. https://arxiv.org/pdf/2401.14196
  • Gupta, M. (2025). RLHF (OpenAI) vs Simple RL (DeepSeek). Medium. https://medium.com/data-science-in-your-pocket/rlhf-openai-vs-simple-rl-deepseek-93054cb509a4
  • Hariri, W. (2023). Unlocking the potential of ChatGPT: A comprehensive exploration of its applications, advantages, limitations, and future directions in natural language processing. https://arxiv.org/abs/2304.02017
  • IBM. (2025a). DeepSeek: sorting through the hype. https://www.ibm.com/think/topics/deepseek
  • IBM. (2025b). DeepSeek's reasoning AI shows power of small models, efficiently. https://www.ibm.com/think/news/deepseek-r1-ai
  • Information Commissioner's Office (ICO). (2023). Guidance on AI and data protection. ICO.
  • Liu, H., Zhou, Y., Li, M., Yuan, C., & Tan, C. (2024). Literature meets data: A synergistic approach to hypothesis generation. https://arxiv.org/pdf/2410.17309
  • Manik, M. M. H. (2025). ChatGPT vs. DeepSeek: A comparative study on AI-Based code generation. https://arxiv.org/pdf/2502.18467
  • Markov, T., Zhang, C., Agarwal, S., Eloundou, T., Lee, T., Adler, S., Jiang, A., & Weng, L. (2023). New and improved content moderation tooling. https://openai.com/blog/new-and-improved-content-moderation-tooling/
  • Mesko, B. (2017). The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development, 2(5), 239-241.
  • Mogavi, R. H., Deng, C., Kim, J. J., Zhou, P., Kwon, Y. D., Metwally, A. H. S., ... & Hui, P. (2024). ChatGPT in education: A blessing or a curse? A qualitative study exploring early adopters’ utilization and perceptions. Computers in Human Behavior: Artificial Humans, 2(1).
  • Nazir, A., & Wang, Z. (2023). A comprehensive survey of ChatGPT: Advancements, applications, prospects, and challenges. Meta-radiology.
  • Neptune.ai (2025). Reinforcement learning from human feedback for LLMs. https://neptune.ai/blog/reinforcement-learning-from-human-feedback-for-llms OpenAI. (2023). GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., ... & Lowe, R. (2022). Training language models to follow instructions with human feedback. https://arxiv.org/pdf/2203.02155
  • Qawqzeh, Y. (2024). Exploring the influence of student interaction with ChatGPT on critical thinking, problem solving, and creativity. International Journal of Information and Education Technology, 14(4), 596-601.
  • Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154.
  • Reuters. (2024). Italy fines OpenAI 15 million euros over privacy rules breach. Reuters. https://www.reuters.com/technology/italy-fines-openai-15-million-euros-over-privacy-rules-breach-2024-12-20/ Rivas, P., & Zhao, L. (2023). Marketing with chatgpt: Navigating the ethical terrain of gpt-based chatbot technology. AI, 4(2), 375-384.
  • Rozado, D. (2023). The political biases of ChatGPT. Social Sciences, 12(3), 148.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Artificial Intelligence (Other)
Journal Section Research Articles
Authors

Koray Demirok 0009-0003-2796-845X

Fatih Eren 0009-0009-2259-0420

Yusuf Samet Akkaya 0009-0006-3927-9100

Dilek Çayirli 0000-0003-0621-2074

Publication Date June 30, 2025
Submission Date May 31, 2025
Acceptance Date June 27, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Demirok, K., Eren, F., Akkaya, Y. S., Çayirli, D. (2025). Üretken Yapay Zeka Performans Kıyaslaması: ChatGPT ve DeepSeek’in Kullanıcı Etkileşimleri Üzerindeki Etkisi. Bilgi Ve İletişim Teknolojileri Dergisi, 7(1), 1-39. https://doi.org/10.53694/bited.1710862

23653236522365523656

Bilgi ve İletişim Teknolojileri Dergisi

Journal of Information and Communication Technologies