Research Article
BibTex RIS Cite

Soya fasulyesinde Sclerotinia kök çürüklüğü hastalığının biyolojik kontrolü

Year 2025, Volume: 65 Issue: 4, 39 - 48, 01.01.2026
https://doi.org/10.16955/bitkorb.1675813

Abstract

Soya (Glycine max) yetiştiriciliğinde Sclerotinia kök çürüklüğü (SR) hastalığına neden olan hastalık etmeni Sclerotinia sclerotiorum (Lib.) de Bary’dir. Hastalık etmeni tohum ve toprak kökenli olması nedeniyle önemli ürün kayıplarına neden olmaktadır. Bu çalışmada SR’nin kontrolünde kimyasal mücadeleye alternatif olabilecek biyolojik kontrol ajanlarından Coniothyrium minitans (CM), Trichoderma harzianum (TH) ve Bacillus subtilis (BS)’nin birlikte ve 10 gün arayla yapılan uygulamalarındaki etkinliği araştırılmıştır. Çalışmada fungal hastalık ve biyolojik ajanların birlikte ve 10 gün arayla uygulamalarında en düşük enfekteli bitki oranları hastalık inokulasyonundan 10 gün önce biyolojik ajan uygulamalarından elde edilmiştir. Bu kapsamda uygulamalarda en düşük hastalık oranı ve en yüksek % etki oranı, %31.68 ve %61.94 ile CM+10 gün sonra SR uygulamasından elde edilmiştir; bunu sırasıyla BS+10 gün sonra SR ve TH+10 gün sonra SR izlemiştir. Çalışmada tüm biyolojik ajanların uygulamalarındaki hastalık oranları kontrole göre hastalık çıkışını önemli düzeyde azalttığı tespit edilmiştir. Çalışmada soya bitkisinde fungal hastalık etmeni Sclerotinia sclerotiorum ile mücadelede kimyasal mücadeleye alternatif biyolojik ajanlardan en başarılısı Coniothyrium minitans olmuş, bunu sırasıyla Bacillus subtilis ve Trichoderma harzianum izlemiştir. Çalışma sonuçları biyolojik preperatların uygulanmasında; fungal hastalık enfeksiyondan önce, enfeksiyon sırasında veya sonrasındaki uygulamaların patojen ile mücadelede başarıyı artırmada önemli bir etken olduğunu ortaya koymuştur.

References

  • Adams P.B., Ayers W.A., 1979. Ecology of Sclerotinia species. Phytopathology, 69 (8), 896-899.
  • Agrios G.N., 2001. Phytopathology, 2nd Edition México, Limusa, 838 p.
  • Agrios. G.N., 1997. Plant Pathology, Academic Pres California, 635 p.
  • Ahmed F., Ahmad I., Khan M.S., 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163 (2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Aksay A., Biçici M., Çinar O., 1991. Beyaz çürüklük etmeni Sclerotinia sclerotiorum (Lib) De Bary'a karşı antagonistlerin belirlenmesi. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 6 (2), 55-62.
  • Amer G.A., Utkheda R.S., 2000. Development of formulation of biologica agents for management of root rots of lettuce and cucumber. Canadian Journal of Microbiology, 46 (9), 809- 816. doi: 10.1139/w00-063.
  • Arıoğlu H.H., 2007. Yağ bitkileri yetiştirme ve ıslahı ders kitapları. Yayın No: A70. Çukurova Üniversitesi, Ziraat Fakültesi, Ofset Atölyesi, 204 s.
  • Aydın M.H., 2015. Biological control of fungal plant diseases with Trichoderma. Turkish Journal of Agricultural Research, 2 (2), 135-148.
  • Bardin S.D., Huang H.C., 2001. Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology, 23 (1), 88–98. https://doi.org/10.1080/07060660109506914
  • Boland G.J., Hall R., 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal Plant Pathology, 16 (2), 93-108. https://doi.org/10.1080/07060669409500766
  • Bora T., Özaktan H., 1998. Bitki hastalıklarıyla biyolojik savaş. Ege Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü Yayınları, 203, İzmir, Türkiye.
  • Budge S.P., Whipps J.M., 1991. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology, 40 (1), 59-66. https://doi.org/10.1111/j.1365-3059.1991.tb02293.x
  • Budge S.P., Whipps J.M., 2001. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 91 (2), 221-227.
  • Canik O.D., 2020. Biocontrol of bacterial diseases with beneficial bacteria in lettuce. International Journal of Agricultural and Natural Sciences, 13 (2), 108-117.
  • Canpolat S., Maden S., 2017. Fasulye köşeli yaprak lekesi (Pseudocercospora griseola (Sacc.) Crous & Braun) hastalığının inokulum kaynaklarının belirlenmesi. Bitki Koruma Bülteni, 57 (1), 39-47.
  • Canpolat S., Tülek S., Yağmur A., Duman K., Karayel R., Atmaca E., Kılınç A.T., 2022. Screening some bean genotypes for resistance to Macrophomina phaseolina in Türkiye. Biodiversity Studies, 1, 013-020. http://doi.org/10.56494/dnbgt.2022.3
  • Chitrampalam P., Wu B.M., Koike S.T., Subbarao K.V., 2011 Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans. Phytopathology, 101 (3), 358-366.
  • Cook G.E., Steadman J.R., Boosalis M.G., 1975. Whetzelinia sclerotiorum and initial infection of dry edible bean in Western Nebreska. Phytopathology, 65, 250-255.
  • Cook R.J., Baker K.F., 1983. The nature and practice of biological control of plant pathogens. St. Paul, Minnesota, USA, American Phytopathological Society, 539 pp.
  • Çetinkaya N., Yildiz M., 1988. Bazı ayçiçeği çeşit ve hatlarının Sclerotinia türlerine reaksiyonları üzerinde çalışmalar. IX. Ulusal Biyoloji Kongresi, Genel Biyoloji, Numerik Taksonomi ve Kantitatif Ekoloji Paneli Bildirileri, 21-23 Eylül 1988, Sivas, Cilt 1, 151-158.
  • Çınar A., Biçici M., 1982. Çukurova’da ayçiçeği parsellerinde görülen tabla çürüklüğü ile kök boğazı ve gövde yanıklığı hastalıklarının etiyolojisi ve önemi. III. Türkiye Fitopatoloji Kongresi Bildirileri, 12-15 Ekim, 1982, Adana, 68-79.
  • Çolak A.A., 2019. Effect of Coniothyrium minitans and Trichoderma harzianum in the biological control of white mold disease (Sclerotinia sclerotiorum) in lettuce (Lactuca sativa L.). Applied Ecology and Environmental Research, 17 (6), 15687-15701.
  • Danielson G.A., Nelson B.D., Helms T.C., 2004. Effect of Sclerotinia stem rot on yield of soybean inoculated at different growth stages. Plant Disease, 88 (3), 297-300. https://doi.org/10.1094/PDIS.2004.88.3.297
  • Delen N., Yildiz M., 2006. Fungicide resistance of some fungal pathogens isolated from greenhouses in Turkey. Journal of Turkish Phytopathology, 11 (1-2), 33-40.
  • Demir S.T., Delen N., 1991. Sclerotinia (Monilinia) spp. izolatlarının bazı fungisitlere karşı duyarlılıkları üzerinde araştırmalar. VI. Türkiye Fitopatoloji Kongresi, İzmir, 275-279.
  • Dutta P., Das B.C., Islam M., 2008. Eco- friendly strategies for management of Sclerotinia rot of french bean. Journal of Biological Control, 22 (2), 405-410.
  • Elad Y., Chet I., Katan J., 1980. Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70, 119-121. https://doi.org/10.1094/Phyto-70-119
  • Elsheshtawi M., Maged T.E., Shaban R.S., Ali H.B., Arif A.M., Dikshit G., Aref S.M., Elgorban A.M., 2017. Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using contans and reduced fungicides application. Saudi Journal of Biological Sciences, 24, 405-409.
  • Etesami H., RyongJeong B., Glick B.R., 2023. Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048. https://doi.org/10.1016/j.pmpp.2023.102048
  • Gerlagh M., Goossen-Van de G.H.M., Fokkema N.J., Vereijken P.F.G., 1999. Long term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology, 89 (2), 141–147. doi: 10.1094/PHYTO.1999.89.2.141.
  • Glick B.R., 1995. The enhancement of plant-growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.
  • Golbitz P., 2004. Soya and oilseed bluebook. Soyatech Publisher, Bar Harbor, ME.
  • Haddad P.E., Leite L.G., Lucon C.M.M., Harakava R., 2017. Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesquisa Agropecuária Brasileira, 52 (12), 1140-1148.
  • Hallman J.A., Quadt-Hallman A., Mahafee W.F., Kloepper J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43 (10), 895–914. https://doi.org/10.1139/m97-13
  • Harman G.E., 2000. Myths and dogmas of biocontrol: changes in perceptions derived from research on T. harzianum T-22. Plant Disease, 84 (4), 377-393. doi: 10.1094/PDIS.2000.84.4.377.
  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M., 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2 (1), 43-56.
  • Hoffman D.D., Hartman G.L., Mueller D.S., Leitz R.A., Nickell C.D., Pedersen W.L., 1998. Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Disease, 82, 826-829. doi: 10.1094/PDIS.1998.82.7.826
  • Huang H.C., Yanke L.J., Phillippe R.C., 1993. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 39 (2), 227-233. https://doi.org/10.1139/m93-032
  • Huang H.C., Bremer E., Hynes R.K., Erickson R.S., 2000. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control, 18 (3), 270-276. https://doi.org/10.1006/bcon.2000.0829
  • Jones D., 1970. Ultrastructure and composition of the cell walls of Sclerotinia sclerotiorum. Transactions of the British Mycological Society, 54 (3), 351–360. https://doi.org/10.1016/S0007-1536(70)80148-6
  • Jones E.E., Stewart A., Whipps J.M., 2003. Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil. Mycological Research, 107 (3), 267–276.
  • Jones E.E., Rabeendran N., Stewart A., 2014. Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Science and Technology, 24 (12), 1363-1382.
  • Karman M., 1971. Bitki koruma araştırmalarında genel bilgiler denemelerin kuruluşu ve değerlendirme esasları. T.C. Tarım Bakanlığı, Zirai Mücadele ve Zirai Karantina Genel Müdürlüğü Yayınları Mesleki Kitaplar Serisi, 279 s.
  • Keleş Ö.P., 2019. Virus diseases of soybean. X. International Multidisciplinary Congress of Eurasia (IMCOFE), 6-9 August 2019, Prague, Czechia, 272 p.
  • Keleş Ö.P., 2023. Determination of virus diseases in soybean production areas in Çukurova, 3rd International Conference on Research of Agriculture and Food Technologies, 4-6 October 2023, Adana, 70 p.
  • Kim H.S., Hartman G.L., Manandhar J.B., Graef G.L., Steadman J.R., Diers B.W., 2000. Reaction of soybean cultivars to Sclerotinia stem rot in field. greenhouse and laboratory evaluations. Crop Science, 40, 665–669.
  • Kim H.S., Park J., Choi S.W., Cho K.H., Lee G. P., Ban S.J., Lee C.H., Kim C. Sun., 2003. Isolation and Ccharacterization of Bacillus strains for biological control. Journal of Microbiology, 41 (3), 196-201.
  • Kredics L., Antal Z., Manczinger L., Szekeres A., Kevei F., Nagy E., 2003. Influence of Environmental Parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 41 (1), 37-42.
  • Krutova N.P., 1987. Mycoparasites of sclerotia of causal agent of sunflower white rot. Mikologiya-i-Fitopatologia, 21, 168-171.
  • Kumar P., Dubey R.C., Maheshwari D.K., 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity aganist phytopathogens. Microbiological Research, 167, 493-499.
  • Kumar R., Sinha A., Srivastava S., Mahajan G., 2017. Evaluation of biocontrol potential of some fungal decomposers of Sesbania aculeata L. green manure against some soil-borne plant pathogens. Journal of Environmental Biology, 38 (1), 37-45.
  • Kumar S., Shukla V., Dubey M.K., Upadhyay R.S., 2021. Activation of defense response in common bean against stem rot disease triggered by Trichoderma erineceum and Trichoderma viride. Journal of Basic Microbiology, 61 (10), 910-922. doi: 10.1002/jobm.202000749
  • Liu J., Ma X., Wang Y., Liu F., Qiao J., Li X.Z., Gao X., Zho T., 2011. Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-polyglutamic acid (γ-PGA) overproduction. Current Microbiology, 62 (1), 235–241. doi: 10.1007/s00284-010-9696-0.
  • Mclaren D.L., Huang H.C., Rimmer S.R., 1996. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrum minitans and Talaromyces flavus. Plant Disease, 80 (12), 1373-1378. http://dx.doi.org/10.1094/PD-80-1373
  • Mcquilken M.P., Whipps J.M.,1995. Production. survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. European Journal of Plant Pathology 101, 101–110.
  • Mcquilken M.P., Budge P., Whipps J.M., 1997. Biological control of Sclerotinia sclerotiorum by film-coating Coniothyrium mitians on to sunflower seed and sclerotia. Plant Pathology, 46 (6), 919 – 929.
  • Melo I.S., Moretini A., Cassiolato A.M.R., Faull J.L., 2011. Development of mutants of Coniothyrium minitans with improved efficiency for control of Sclerotinia sclerotiorum. Journal of Plant Protection Research, 51 (2), 179-183. doi: https://doi.org/10.2478/v10045-011-0031-y
  • Menendez A.B., Godeas A., 1998. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia, 142 (3), 153-160.
  • Nagórska K., Bikowski M., Obuchowski M., 2007. Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica, 54 (3), 495-508.
  • Nelson B., Duval D., Wu H., 1988. An in vitro tecnique for large-scale production of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 78, 1470- 1472.
  • Onaran A., Yanar Y., 2004. Tokat ve Amasya yöresinde seralarda hıyarlarda görülen beyaz çürüklük etmeni Sclerotinia sclerotiorum (Lib.) De Bary’un yaygınlığı ve miselyum uyumluluk gruplarının belirlenmesi üzerine araştırmalar. Türkiye II. Bitki Koruma Kongresi, 27-29 Ağustos 2007, Isparta, 283 s.
  • Orozco M., Velázquez-Becerra M.C., Macías-Rodríguez C., Santoyo L.I., Flores-Cortez G., Alfaro-Cuevas I.R., 2013. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (Strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil, 362, 51–66.
  • Rigobelo E.C., Andrade L.A., Santos C.H.B., Frezarin E.T., Sales L.R., Carvalho L.A.L., Pinherio D.G., Nicodemo D., Babalola O.O., Verdi M.C.Q., Mondin M., Desoignies N., 2024. Effects of Trichoderma harzianum and Bacillus subtilis on the root and soil microbiomes of the soybean plant INTACTA RR2 PRO™. Frontiers Plant Science, 15:1403160.
  • Santos E.R., Gouveia E.R., Mariano R.L.R., Souto-Maior A.M., 2006. Controle biológico da mancha aquosa do melão por compostos bioativos produzidos por Bacillus spp. Summa Phytopathologica, 32 (4), 376-378.
  • Sesan T., Csep N., 1993. Prevention of white rot (Sclerotinia sclerotiorum (Lib.) de Bary) in sunflower and annual legumes using the biological agent Coniothyrium minitans Campbell. Studiisi Cercetari de Biologie. Biologie Vegetala (1991), 43 (1-2), 11-17.
  • Smolinska U., Kowalska B., 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum- a review. Journal of Plant Pathology, 100, 1-12. https://doi.org/10.1007/s42161-018-0023-0
  • Soylu S., 2011. Marul (Lactuca sativa L.) bitkisinde beyaz çürüklük hastalığına (Sclerotinia sclerotiorum (Lib.) de Bary) karşı kök bakterilerinin kullanım olanakları. Alatarım, 10 (2), 85-93.
  • Soylu S., Soylu E.M., Kurt Ş., Ekici Ö.K., 2005. Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8 (1), 43-48.
  • Soylu E.M., Soylu S., Kara M., Kurt Ş., 2020. Determinations of in vitro antagonistic effects of microbiomes isolated from vermicompost against major plant fungal disease agents of vegetables. KSU Journal of Agriculture and Nature, 23 (1), 7-18. doi: 10.18016/ksutarimdoga.vi.601936.
  • Townsend G.R., Heuberger J.W.,1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease, 27, 340-343.
  • Tozlu E., Demirci E., 2008. Erzurum-Pasinler Ovası’nda ayçiçeğinde Sclerotinia sclerotiorum ve S. minor tarafından oluşturulan gövde çürüklüğü hastalığının yaygınlığı etmenlerin tanılanması ve bazı ayçiçeği çeşitlerinin hastalık etmenlerine reaksiyonu. Bitki Koruma Bülteni (Plant Protection Bulletin), 48 (4), 19-33.
  • Visser D.D., 2007. Studies on Sclerotinia sclerotiorum (Sclerotinia stem rot) on soybeans. MSc thesis. University of KwaZulu-Natal, Pietermaritzburg, South Africa, 238 pp.
  • Weller D., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407.
  • Windham M.T., Elad Y., Baker R., 1986. A mechanism for increased plant-growth induced by Trichoderma spp. Phytopathology, 76 (5), 518-521. http://dx.doi.org/10.1094/Phyto-76-518.
  • Workneh F., Yang B., 2000. Prevalence of Sclerotinia stem rot of soybeans in the North-Central United States in Relation to Tillage. Cimate and Latitudinal Positions. Phytopathology, 90, 1375-1382. https://doi.org/10.1094/PHYTO.2000.90.12.1375
  • Wrather J.A., Anderson T.R., Arsyad D.M., Gai J., Ploper L.D., Porta-Puglia A., Ram H.H., Orinori J.T., 1997. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Disease, 81 (1), 107-110. doi: 10.1094/PDIS.1997.81.1.107.
  • Yang X.B., Lundeen P., Uphoff M.D., 1999. Soybean varietal response and yield loss caused by Sclerotinia sclerotiorum. Plant Disease, 83 (5), 456-461. doi: 10.1094/PDIS.1999.83.5.456.
  • Yedidia I., Srivastva A.K., Kapulnik Y., Chet I., 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235 (2), 235-242.
  • Yıldız F., Çoşkun B.Ç., 2017. Biological control of white mold disease (Sclerotinia sclerotiorum) on lettuce by using fungal antagonists. Journal of Turkish Phytopathology, 46 (1), 1-14.
  • Zazzerini A., Tosi L.L., Rossi J., 1987. Antagonistic effects of Bacillus spp. on Sclerotinia sclerotiorum sclerotia. Phytopathologia Mediterranea, 26 (3), 185-187.
  • Zeng W., Kırk W., Hao J., 2012. Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control, 60 (2), 141-147.
  • Zhang J.X., Xue A.G., 2010. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathology, 59 (2), 382-391. https://doi.org/10.1111/j.1365-3059.2009.02227.x

Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean

Year 2025, Volume: 65 Issue: 4, 39 - 48, 01.01.2026
https://doi.org/10.16955/bitkorb.1675813

Abstract

In soybean (Glycine max) cultivation, the disease pathogen causing Sclerotinia stem rot (SR) disease is Sclerotinia sclerotiorum (Lib.) de Bary. The Sclerotinia sclerotiorum causes significant crop losses due to its seed and soil borne infecton. In this study, the effectiveness of biological control agents such as Coniothyrium minitans (CM), Trichoderma harzianum (TH), and Bacillus subtilis (BS), which can be used as alternatives to chemical control in managing SR, was investigated when applied together and at 10-day intervals. In the study, the lowest infected plant rates in biological control with SR were obtained from biological agent applications 10 days before disease inoculation. In this context, the lowest disease severity % and the highest % effect rate were obtained from the CM+10 days later SR application with 31.68% and 61.94%, followed by BS+10 days later SR and TH+10 days later SR, respectively. All biological agents have been found to significantly reduce disease occurrence compared to control. In the study, the most successful biological agent alternative to chemical control against Sclerotinia sclerotiorum was Coniothyrium minitans, followed by Bacillus subtilis and Trichoderma harzianum, respectively. The study results revealed that the applications of biological preparations before, during, or after fungal infection is an important factor in improving control of the disease pathogen.

Thanks

The authors thanks to the Ministry of Agriculture and Forestry General Directorate of Agricultural Research and Policies (TAGEM).

References

  • Adams P.B., Ayers W.A., 1979. Ecology of Sclerotinia species. Phytopathology, 69 (8), 896-899.
  • Agrios G.N., 2001. Phytopathology, 2nd Edition México, Limusa, 838 p.
  • Agrios. G.N., 1997. Plant Pathology, Academic Pres California, 635 p.
  • Ahmed F., Ahmad I., Khan M.S., 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163 (2), 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  • Aksay A., Biçici M., Çinar O., 1991. Beyaz çürüklük etmeni Sclerotinia sclerotiorum (Lib) De Bary'a karşı antagonistlerin belirlenmesi. Çukurova Üniversitesi Ziraat Fakültesi Dergisi, 6 (2), 55-62.
  • Amer G.A., Utkheda R.S., 2000. Development of formulation of biologica agents for management of root rots of lettuce and cucumber. Canadian Journal of Microbiology, 46 (9), 809- 816. doi: 10.1139/w00-063.
  • Arıoğlu H.H., 2007. Yağ bitkileri yetiştirme ve ıslahı ders kitapları. Yayın No: A70. Çukurova Üniversitesi, Ziraat Fakültesi, Ofset Atölyesi, 204 s.
  • Aydın M.H., 2015. Biological control of fungal plant diseases with Trichoderma. Turkish Journal of Agricultural Research, 2 (2), 135-148.
  • Bardin S.D., Huang H.C., 2001. Research on biology and control of Sclerotinia diseases in Canada. Canadian Journal of Plant Pathology, 23 (1), 88–98. https://doi.org/10.1080/07060660109506914
  • Boland G.J., Hall R., 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal Plant Pathology, 16 (2), 93-108. https://doi.org/10.1080/07060669409500766
  • Bora T., Özaktan H., 1998. Bitki hastalıklarıyla biyolojik savaş. Ege Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü Yayınları, 203, İzmir, Türkiye.
  • Budge S.P., Whipps J.M., 1991. Glasshouse trials of Coniothyrium minitans and Trichoderma species for the biological control of Sclerotinia sclerotiorum in celery and lettuce. Plant Pathology, 40 (1), 59-66. https://doi.org/10.1111/j.1365-3059.1991.tb02293.x
  • Budge S.P., Whipps J.M., 2001. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology, 91 (2), 221-227.
  • Canik O.D., 2020. Biocontrol of bacterial diseases with beneficial bacteria in lettuce. International Journal of Agricultural and Natural Sciences, 13 (2), 108-117.
  • Canpolat S., Maden S., 2017. Fasulye köşeli yaprak lekesi (Pseudocercospora griseola (Sacc.) Crous & Braun) hastalığının inokulum kaynaklarının belirlenmesi. Bitki Koruma Bülteni, 57 (1), 39-47.
  • Canpolat S., Tülek S., Yağmur A., Duman K., Karayel R., Atmaca E., Kılınç A.T., 2022. Screening some bean genotypes for resistance to Macrophomina phaseolina in Türkiye. Biodiversity Studies, 1, 013-020. http://doi.org/10.56494/dnbgt.2022.3
  • Chitrampalam P., Wu B.M., Koike S.T., Subbarao K.V., 2011 Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans. Phytopathology, 101 (3), 358-366.
  • Cook G.E., Steadman J.R., Boosalis M.G., 1975. Whetzelinia sclerotiorum and initial infection of dry edible bean in Western Nebreska. Phytopathology, 65, 250-255.
  • Cook R.J., Baker K.F., 1983. The nature and practice of biological control of plant pathogens. St. Paul, Minnesota, USA, American Phytopathological Society, 539 pp.
  • Çetinkaya N., Yildiz M., 1988. Bazı ayçiçeği çeşit ve hatlarının Sclerotinia türlerine reaksiyonları üzerinde çalışmalar. IX. Ulusal Biyoloji Kongresi, Genel Biyoloji, Numerik Taksonomi ve Kantitatif Ekoloji Paneli Bildirileri, 21-23 Eylül 1988, Sivas, Cilt 1, 151-158.
  • Çınar A., Biçici M., 1982. Çukurova’da ayçiçeği parsellerinde görülen tabla çürüklüğü ile kök boğazı ve gövde yanıklığı hastalıklarının etiyolojisi ve önemi. III. Türkiye Fitopatoloji Kongresi Bildirileri, 12-15 Ekim, 1982, Adana, 68-79.
  • Çolak A.A., 2019. Effect of Coniothyrium minitans and Trichoderma harzianum in the biological control of white mold disease (Sclerotinia sclerotiorum) in lettuce (Lactuca sativa L.). Applied Ecology and Environmental Research, 17 (6), 15687-15701.
  • Danielson G.A., Nelson B.D., Helms T.C., 2004. Effect of Sclerotinia stem rot on yield of soybean inoculated at different growth stages. Plant Disease, 88 (3), 297-300. https://doi.org/10.1094/PDIS.2004.88.3.297
  • Delen N., Yildiz M., 2006. Fungicide resistance of some fungal pathogens isolated from greenhouses in Turkey. Journal of Turkish Phytopathology, 11 (1-2), 33-40.
  • Demir S.T., Delen N., 1991. Sclerotinia (Monilinia) spp. izolatlarının bazı fungisitlere karşı duyarlılıkları üzerinde araştırmalar. VI. Türkiye Fitopatoloji Kongresi, İzmir, 275-279.
  • Dutta P., Das B.C., Islam M., 2008. Eco- friendly strategies for management of Sclerotinia rot of french bean. Journal of Biological Control, 22 (2), 405-410.
  • Elad Y., Chet I., Katan J., 1980. Trichoderma harzianum: a biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70, 119-121. https://doi.org/10.1094/Phyto-70-119
  • Elsheshtawi M., Maged T.E., Shaban R.S., Ali H.B., Arif A.M., Dikshit G., Aref S.M., Elgorban A.M., 2017. Integrated control of white rot disease on beans caused by Sclerotinia sclerotiorum using contans and reduced fungicides application. Saudi Journal of Biological Sciences, 24, 405-409.
  • Etesami H., RyongJeong B., Glick B.R., 2023. Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048. https://doi.org/10.1016/j.pmpp.2023.102048
  • Gerlagh M., Goossen-Van de G.H.M., Fokkema N.J., Vereijken P.F.G., 1999. Long term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum infected crops. Phytopathology, 89 (2), 141–147. doi: 10.1094/PHYTO.1999.89.2.141.
  • Glick B.R., 1995. The enhancement of plant-growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117.
  • Golbitz P., 2004. Soya and oilseed bluebook. Soyatech Publisher, Bar Harbor, ME.
  • Haddad P.E., Leite L.G., Lucon C.M.M., Harakava R., 2017. Selection of Trichoderma spp. strains for the control of Sclerotinia sclerotiorum in soybean. Pesquisa Agropecuária Brasileira, 52 (12), 1140-1148.
  • Hallman J.A., Quadt-Hallman A., Mahafee W.F., Kloepper J.W., 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43 (10), 895–914. https://doi.org/10.1139/m97-13
  • Harman G.E., 2000. Myths and dogmas of biocontrol: changes in perceptions derived from research on T. harzianum T-22. Plant Disease, 84 (4), 377-393. doi: 10.1094/PDIS.2000.84.4.377.
  • Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M., 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews. Microbiology, 2 (1), 43-56.
  • Hoffman D.D., Hartman G.L., Mueller D.S., Leitz R.A., Nickell C.D., Pedersen W.L., 1998. Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum. Plant Disease, 82, 826-829. doi: 10.1094/PDIS.1998.82.7.826
  • Huang H.C., Yanke L.J., Phillippe R.C., 1993. Bacterial suppression of basal pod rot and end rot of dry peas caused by Sclerotinia sclerotiorum. Canadian Journal of Microbiology, 39 (2), 227-233. https://doi.org/10.1139/m93-032
  • Huang H.C., Bremer E., Hynes R.K., Erickson R.S., 2000. Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum. Biological Control, 18 (3), 270-276. https://doi.org/10.1006/bcon.2000.0829
  • Jones D., 1970. Ultrastructure and composition of the cell walls of Sclerotinia sclerotiorum. Transactions of the British Mycological Society, 54 (3), 351–360. https://doi.org/10.1016/S0007-1536(70)80148-6
  • Jones E.E., Stewart A., Whipps J.M., 2003. Use of Coniothyrium minitans transformed with the hygromycin B resistance gene to study survival and infection of Sclerotinia sclerotiorum sclerotia in soil. Mycological Research, 107 (3), 267–276.
  • Jones E.E., Rabeendran N., Stewart A., 2014. Biocontrol of Sclerotinia sclerotiorum infection of cabbage by Coniothyrium minitans and Trichoderma spp. Biocontrol Science and Technology, 24 (12), 1363-1382.
  • Karman M., 1971. Bitki koruma araştırmalarında genel bilgiler denemelerin kuruluşu ve değerlendirme esasları. T.C. Tarım Bakanlığı, Zirai Mücadele ve Zirai Karantina Genel Müdürlüğü Yayınları Mesleki Kitaplar Serisi, 279 s.
  • Keleş Ö.P., 2019. Virus diseases of soybean. X. International Multidisciplinary Congress of Eurasia (IMCOFE), 6-9 August 2019, Prague, Czechia, 272 p.
  • Keleş Ö.P., 2023. Determination of virus diseases in soybean production areas in Çukurova, 3rd International Conference on Research of Agriculture and Food Technologies, 4-6 October 2023, Adana, 70 p.
  • Kim H.S., Hartman G.L., Manandhar J.B., Graef G.L., Steadman J.R., Diers B.W., 2000. Reaction of soybean cultivars to Sclerotinia stem rot in field. greenhouse and laboratory evaluations. Crop Science, 40, 665–669.
  • Kim H.S., Park J., Choi S.W., Cho K.H., Lee G. P., Ban S.J., Lee C.H., Kim C. Sun., 2003. Isolation and Ccharacterization of Bacillus strains for biological control. Journal of Microbiology, 41 (3), 196-201.
  • Kredics L., Antal Z., Manczinger L., Szekeres A., Kevei F., Nagy E., 2003. Influence of Environmental Parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 41 (1), 37-42.
  • Krutova N.P., 1987. Mycoparasites of sclerotia of causal agent of sunflower white rot. Mikologiya-i-Fitopatologia, 21, 168-171.
  • Kumar P., Dubey R.C., Maheshwari D.K., 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity aganist phytopathogens. Microbiological Research, 167, 493-499.
  • Kumar R., Sinha A., Srivastava S., Mahajan G., 2017. Evaluation of biocontrol potential of some fungal decomposers of Sesbania aculeata L. green manure against some soil-borne plant pathogens. Journal of Environmental Biology, 38 (1), 37-45.
  • Kumar S., Shukla V., Dubey M.K., Upadhyay R.S., 2021. Activation of defense response in common bean against stem rot disease triggered by Trichoderma erineceum and Trichoderma viride. Journal of Basic Microbiology, 61 (10), 910-922. doi: 10.1002/jobm.202000749
  • Liu J., Ma X., Wang Y., Liu F., Qiao J., Li X.Z., Gao X., Zho T., 2011. Depressed biofilm production in Bacillus amyloliquefaciens C06 causes γ-polyglutamic acid (γ-PGA) overproduction. Current Microbiology, 62 (1), 235–241. doi: 10.1007/s00284-010-9696-0.
  • Mclaren D.L., Huang H.C., Rimmer S.R., 1996. Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrum minitans and Talaromyces flavus. Plant Disease, 80 (12), 1373-1378. http://dx.doi.org/10.1094/PD-80-1373
  • Mcquilken M.P., Whipps J.M.,1995. Production. survival and evaluation of solid-substrate inocula of Coniothyrium minitans against Sclerotinia sclerotiorum. European Journal of Plant Pathology 101, 101–110.
  • Mcquilken M.P., Budge P., Whipps J.M., 1997. Biological control of Sclerotinia sclerotiorum by film-coating Coniothyrium mitians on to sunflower seed and sclerotia. Plant Pathology, 46 (6), 919 – 929.
  • Melo I.S., Moretini A., Cassiolato A.M.R., Faull J.L., 2011. Development of mutants of Coniothyrium minitans with improved efficiency for control of Sclerotinia sclerotiorum. Journal of Plant Protection Research, 51 (2), 179-183. doi: https://doi.org/10.2478/v10045-011-0031-y
  • Menendez A.B., Godeas A., 1998. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia, 142 (3), 153-160.
  • Nagórska K., Bikowski M., Obuchowski M., 2007. Multicellular behavior and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica, 54 (3), 495-508.
  • Nelson B., Duval D., Wu H., 1988. An in vitro tecnique for large-scale production of sclerotia of Sclerotinia sclerotiorum. Phytopathology, 78, 1470- 1472.
  • Onaran A., Yanar Y., 2004. Tokat ve Amasya yöresinde seralarda hıyarlarda görülen beyaz çürüklük etmeni Sclerotinia sclerotiorum (Lib.) De Bary’un yaygınlığı ve miselyum uyumluluk gruplarının belirlenmesi üzerine araştırmalar. Türkiye II. Bitki Koruma Kongresi, 27-29 Ağustos 2007, Isparta, 283 s.
  • Orozco M., Velázquez-Becerra M.C., Macías-Rodríguez C., Santoyo L.I., Flores-Cortez G., Alfaro-Cuevas I.R., 2013. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (Strategy I plant) in vitro via dimethylhexadecylamine emission. Plant and Soil, 362, 51–66.
  • Rigobelo E.C., Andrade L.A., Santos C.H.B., Frezarin E.T., Sales L.R., Carvalho L.A.L., Pinherio D.G., Nicodemo D., Babalola O.O., Verdi M.C.Q., Mondin M., Desoignies N., 2024. Effects of Trichoderma harzianum and Bacillus subtilis on the root and soil microbiomes of the soybean plant INTACTA RR2 PRO™. Frontiers Plant Science, 15:1403160.
  • Santos E.R., Gouveia E.R., Mariano R.L.R., Souto-Maior A.M., 2006. Controle biológico da mancha aquosa do melão por compostos bioativos produzidos por Bacillus spp. Summa Phytopathologica, 32 (4), 376-378.
  • Sesan T., Csep N., 1993. Prevention of white rot (Sclerotinia sclerotiorum (Lib.) de Bary) in sunflower and annual legumes using the biological agent Coniothyrium minitans Campbell. Studiisi Cercetari de Biologie. Biologie Vegetala (1991), 43 (1-2), 11-17.
  • Smolinska U., Kowalska B., 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum- a review. Journal of Plant Pathology, 100, 1-12. https://doi.org/10.1007/s42161-018-0023-0
  • Soylu S., 2011. Marul (Lactuca sativa L.) bitkisinde beyaz çürüklük hastalığına (Sclerotinia sclerotiorum (Lib.) de Bary) karşı kök bakterilerinin kullanım olanakları. Alatarım, 10 (2), 85-93.
  • Soylu S., Soylu E.M., Kurt Ş., Ekici Ö.K., 2005. Antagonistic potentials of rhizosphere-associated bacterial isolates against soil-borne diseases of tomato and pepper caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan Journal of Biological Sciences, 8 (1), 43-48.
  • Soylu E.M., Soylu S., Kara M., Kurt Ş., 2020. Determinations of in vitro antagonistic effects of microbiomes isolated from vermicompost against major plant fungal disease agents of vegetables. KSU Journal of Agriculture and Nature, 23 (1), 7-18. doi: 10.18016/ksutarimdoga.vi.601936.
  • Townsend G.R., Heuberger J.W.,1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease, 27, 340-343.
  • Tozlu E., Demirci E., 2008. Erzurum-Pasinler Ovası’nda ayçiçeğinde Sclerotinia sclerotiorum ve S. minor tarafından oluşturulan gövde çürüklüğü hastalığının yaygınlığı etmenlerin tanılanması ve bazı ayçiçeği çeşitlerinin hastalık etmenlerine reaksiyonu. Bitki Koruma Bülteni (Plant Protection Bulletin), 48 (4), 19-33.
  • Visser D.D., 2007. Studies on Sclerotinia sclerotiorum (Sclerotinia stem rot) on soybeans. MSc thesis. University of KwaZulu-Natal, Pietermaritzburg, South Africa, 238 pp.
  • Weller D., 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379-407.
  • Windham M.T., Elad Y., Baker R., 1986. A mechanism for increased plant-growth induced by Trichoderma spp. Phytopathology, 76 (5), 518-521. http://dx.doi.org/10.1094/Phyto-76-518.
  • Workneh F., Yang B., 2000. Prevalence of Sclerotinia stem rot of soybeans in the North-Central United States in Relation to Tillage. Cimate and Latitudinal Positions. Phytopathology, 90, 1375-1382. https://doi.org/10.1094/PHYTO.2000.90.12.1375
  • Wrather J.A., Anderson T.R., Arsyad D.M., Gai J., Ploper L.D., Porta-Puglia A., Ram H.H., Orinori J.T., 1997. Soybean disease loss estimates for the top 10 soybean producing countries in 1994. Plant Disease, 81 (1), 107-110. doi: 10.1094/PDIS.1997.81.1.107.
  • Yang X.B., Lundeen P., Uphoff M.D., 1999. Soybean varietal response and yield loss caused by Sclerotinia sclerotiorum. Plant Disease, 83 (5), 456-461. doi: 10.1094/PDIS.1999.83.5.456.
  • Yedidia I., Srivastva A.K., Kapulnik Y., Chet I., 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235 (2), 235-242.
  • Yıldız F., Çoşkun B.Ç., 2017. Biological control of white mold disease (Sclerotinia sclerotiorum) on lettuce by using fungal antagonists. Journal of Turkish Phytopathology, 46 (1), 1-14.
  • Zazzerini A., Tosi L.L., Rossi J., 1987. Antagonistic effects of Bacillus spp. on Sclerotinia sclerotiorum sclerotia. Phytopathologia Mediterranea, 26 (3), 185-187.
  • Zeng W., Kırk W., Hao J., 2012. Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control, 60 (2), 141-147.
  • Zhang J.X., Xue A.G., 2010. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathology, 59 (2), 382-391. https://doi.org/10.1111/j.1365-3059.2009.02227.x
There are 82 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Article
Authors

Ayşegül Çolak 0000-0003-3712-1132

Submission Date April 14, 2025
Acceptance Date July 30, 2025
Publication Date January 1, 2026
Published in Issue Year 2025 Volume: 65 Issue: 4

Cite

APA Çolak, A. (2026). Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean. Plant Protection Bulletin, 65(4), 39-48. https://doi.org/10.16955/bitkorb.1675813
AMA Çolak A. Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean. Plant Protection Bulletin. January 2026;65(4):39-48. doi:10.16955/bitkorb.1675813
Chicago Çolak, Ayşegül. “Biological Control of Sclerotinia Stem Rot Disease (Sclerotinia Sclerotiorum) in Soybean”. Plant Protection Bulletin 65, no. 4 (January 2026): 39-48. https://doi.org/10.16955/bitkorb.1675813.
EndNote Çolak A (January 1, 2026) Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean. Plant Protection Bulletin 65 4 39–48.
IEEE A. Çolak, “Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean”, Plant Protection Bulletin, vol. 65, no. 4, pp. 39–48, 2026, doi: 10.16955/bitkorb.1675813.
ISNAD Çolak, Ayşegül. “Biological Control of Sclerotinia Stem Rot Disease (Sclerotinia Sclerotiorum) in Soybean”. Plant Protection Bulletin 65/4 (January2026), 39-48. https://doi.org/10.16955/bitkorb.1675813.
JAMA Çolak A. Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean. Plant Protection Bulletin. 2026;65:39–48.
MLA Çolak, Ayşegül. “Biological Control of Sclerotinia Stem Rot Disease (Sclerotinia Sclerotiorum) in Soybean”. Plant Protection Bulletin, vol. 65, no. 4, 2026, pp. 39-48, doi:10.16955/bitkorb.1675813.
Vancouver Çolak A. Biological control of Sclerotinia stem rot disease (Sclerotinia sclerotiorum) in soybean. Plant Protection Bulletin. 2026;65(4):39-48.

136481365013649589c73e2330bd.jpg