Sürünme Test Cihazı Tasarımı ve İmalatı
Year 2022,
, 369 - 376, 24.03.2022
Ömer Karabey
,
Ahmet Akkuş
Abstract
Bilindiği üzere malzemelerin mekanik davranışları sıcaklık ile değişiklik göstermektedir. Yüksek sıcaklıklarda ise bu davranış daha da önem kazanmaktadır. Yüksek sıcaklıkta, statik veya dinamik zorlamalar altında olan bir malzemenin mekanik davranışını sürünme testi ile belirlenebilmektedir. Sürünme testleri uzun ve maliyetlidir. Buradaki maliyet hem test cihazı hem de cihazın işletme maliyetidir. Maliyeti düşürmek için daha düşük bütçeler ile yapılabilecek bir test cihazı tasarlanmış ve imalatı yapılmıştır. Sürünme test cihazının konstrüksiyonu NPU65 profil ve 32mm çaplı miller üzerine kurulmuştur. Fırın kısmı ateş tuğlası ve refrakter tuğla ile yapılmıştır. Isıtıcı rezistanslar ise 22 awg Kanthal A1 teli ile sarılmıştır. Sıcaklık kontrolü ise REX C100 PID kontrolcüsü ve 70A solid state röle ile sağlanmıştır. Fırın maksimum 1000 °C de çalışmaktadır. Sürünme numunelerinin tutma çeneleri Inconel 718 süper alaşımından imal edilmiştir. Test numuneleri M12x1,75 sağ ve sol diş vida ile çenelere tutturulmuştur. Cihazda test numunesi maksimum 18 kN yük uygulanabilir. Numune boyundaki uzamalar ise 0,0001 mm hassasiyetli dijital komparatör ile zamana bağlı olarak kaydedilip sürünme grafiği oluşturulmaktadır.
Supporting Institution
Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri
Thanks
Bu çalışma, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) tarafından M-789 proje numarası ile desteklenmiştir.
References
- [1] Penny P.K., Marriott D.L. 1995. Design for Creep. Chapman & Hall, London, 1-430.
- [2] Momoh, John J, O.N.A. Ajueyitsi, and A.I.M. Onipede. 2008. Development of a Low Cost Mechanically Operated Tensile and Creep Tesing Machine. Journal of Engineering and Applied Science, 3(6): 491–95.
- [3] Momoh, John J, Lanre Y. Shuaib-Babata, and Gabriel O. Adelegan. 2010. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine. Department of Mechanical Engineering, Federal Polytechnic, (16): 83–94.
- [4] Hosseini, S.M.A. et al. 2012. Development of a New Creep Testing Equipment to Obtain Long-Term Deformation Parameters of Salt Rocks. Journal of Mining and Environment, 3(1): 27–32.
- [5] Ravi, S. et al. 2014. Design of Creep Machine and Creep Specimen Chamber for Carrying out Creep Tests in Flowing Liquid Sodium. Nuclear Engineering and Design, 267: 1–9.
- [6] Alaneme, Kenneth Kanayo, Bethel Jeremiah Bamike, and Godwin Omlenyi. 2014. Design and Performance Evaluation of a Sustained Load Dual Grip Creep Testing Machine. Journal of Minerals and Materials Characterization and Engineering, 02(06): 531–38
- [7] Zubair Khan, Muhammad et al. 2015. Design and Fabrication of High Temperature Creep Testing Machine. American Journal of Materials Engineering and Technology, 3(3): 51–57.
- [8] Chukwuneke, J, P Okolie, D Ugwuegbu, and J Sinebe. 2016. Design Analysis and Fabrication of a Tensile Creep Testing Machine. British Journal of Applied Science&Technology, 14(3): 1–13.
- [9] Hiyoshi, Noritake et al. 2019. Development of Multiaxial Creep Testing Machine for Miniature Specimen. In MATEC Web of Conferences, EDP Sciences, 14001.
- [10] Kanthal Handbook, 2003. Heating Alloys for Electric Household Appliances. https://www.west-l.com/uploads/tdpdf/06080303.pdf (Erişim tarihi: 25.11.2021)
Design and Manufacturing of Creep Testing Machine
Year 2022,
, 369 - 376, 24.03.2022
Ömer Karabey
,
Ahmet Akkuş
Abstract
As it is known, the mechanical behavior of materials changes with temperature. At higher temperatures, this behavior becomes even more important. The mechanical behavior of a material under high temperature, static or dynamic stresses can be determined by the creep test. Creep tests are long and costly. The cost here is both the testing machine and the operating cost of the instrument. To reduce the cost, a test device that can be made with lower budgets has been designed and manufactured. The construction of the creep test device is based on NPU65 profile and 32 mm diameter shafts. The furnace part is made of fire brick and refractory brick. The heating resistors are wrapped with 22 awg Kanthal A1 wire. Temperature control is provided by REX C100 PID controller and 70A solid state relay. The oven operates at a maximum of 1000 °C. The gripping jaws of the creep specimens are made of Inconel 718 super alloy. The test specimens were attached to the jaws with M12x1.75 right and left screw. A maximum load of 18 kN can be applied to the test sample on the testing machine. The elongation in the sample length is recorded with a digital comparator with 0.0001 mm accuracy and a creep graph is created.
References
- [1] Penny P.K., Marriott D.L. 1995. Design for Creep. Chapman & Hall, London, 1-430.
- [2] Momoh, John J, O.N.A. Ajueyitsi, and A.I.M. Onipede. 2008. Development of a Low Cost Mechanically Operated Tensile and Creep Tesing Machine. Journal of Engineering and Applied Science, 3(6): 491–95.
- [3] Momoh, John J, Lanre Y. Shuaib-Babata, and Gabriel O. Adelegan. 2010. Modification and Performance Evaluation of a Low Cost Electro-Mechanically Operated Creep Testing Machine. Department of Mechanical Engineering, Federal Polytechnic, (16): 83–94.
- [4] Hosseini, S.M.A. et al. 2012. Development of a New Creep Testing Equipment to Obtain Long-Term Deformation Parameters of Salt Rocks. Journal of Mining and Environment, 3(1): 27–32.
- [5] Ravi, S. et al. 2014. Design of Creep Machine and Creep Specimen Chamber for Carrying out Creep Tests in Flowing Liquid Sodium. Nuclear Engineering and Design, 267: 1–9.
- [6] Alaneme, Kenneth Kanayo, Bethel Jeremiah Bamike, and Godwin Omlenyi. 2014. Design and Performance Evaluation of a Sustained Load Dual Grip Creep Testing Machine. Journal of Minerals and Materials Characterization and Engineering, 02(06): 531–38
- [7] Zubair Khan, Muhammad et al. 2015. Design and Fabrication of High Temperature Creep Testing Machine. American Journal of Materials Engineering and Technology, 3(3): 51–57.
- [8] Chukwuneke, J, P Okolie, D Ugwuegbu, and J Sinebe. 2016. Design Analysis and Fabrication of a Tensile Creep Testing Machine. British Journal of Applied Science&Technology, 14(3): 1–13.
- [9] Hiyoshi, Noritake et al. 2019. Development of Multiaxial Creep Testing Machine for Miniature Specimen. In MATEC Web of Conferences, EDP Sciences, 14001.
- [10] Kanthal Handbook, 2003. Heating Alloys for Electric Household Appliances. https://www.west-l.com/uploads/tdpdf/06080303.pdf (Erişim tarihi: 25.11.2021)