Assessing Exposure Levels of Different Groups to Respirable Dust from Building Collapses During the 2023 Kahramanmaras Earthquakes
Year 2024,
, 1271 - 1281, 31.12.2024
Tuba Rastgeldi Dogan
,
Ali Süzergöz
Abstract
In addition to the immediate destruction caused by earthquakes, significant long-term issues arise, including health problems resulting from dust produced during building demolitions. This study aimed to analyze the perceptual effects of this dust on individuals. A survey was conducted to assess the extent of dust exposure among three groups: a) Demolition officers (DO), b) Environmental safety officers (SO), and c. Individuals present during demolition (IP). Participants provided demographic data and responded to 28 questions about their dust exposure levels. The SO group reported the highest impact from dust, both physiologically and psychologically, while the DO and IP groups were less affected. Health issues, particularly respiratory problems, were notably prevalent. The SO group demonstrated higher sensitivity to dust exposure and the need for protective equipment, highlighting the inadequacy of current protective measures. Our findings also revealed that DO and IP groups had insufficient knowledge about the health risks associated with dust exposure and displayed limited interest in using protective measures. Conversely, although the SO group, with higher education levels, demonstrated greater awareness, they also failed to adequately prioritize protective measures. Overall, the results emphasize the need for improved awareness and more effective protective practices for all individuals involved in demolition activities.
Ethical Statement
The authors declare that they comply with all ethical standards.
Supporting Institution
TÜBİTAK (TÜBİTAK 2209-A University Students Research Projects Support Program)
Project Number
1919B012317689
Thanks
This study was supported by TÜBİTAK 2209-A University Students Research Projects Support Program (Project No: 1919B012317689) We would like to thank TÜBİTAK for their support. We would also like to thank the Presidency of Environment, Urbanization and Climate Change of the Republic of Turkey and the governorships of Sanlıurfa, Adiyaman and Kahramanmaras for their contributions and support to our study.
References
- [1] E. Işık, E. Harirchian, A. Büyüksaraç, and Y. Levent Ekinci, “Seismic and structural analyses of the Eastern Anatolian Region (Turkey) using different probabilities of exceedance,” Appl. Syst. Innov., vol. 4, no. 4, p. 89, 2021.
- [2] M. Sahin, E. Tari, “The August 17 Kocaeli and the November 12 Duzce earthquakes in Turkey,” jstage, vol. 52, no. 10, pp. 753–757, 2000.
- [3] M. Erdik, Y. Kamer, M. Demircioğlu, and K. Şeşetyan, “23 October 2011 Van (Turkey) earthquake,” Nat. Hazards (Dordr.), vol. 64, no. 1, pp. 651–665, 2012.
- [4] G. Dogan, A. S. Ecemis, S. Z. Korkmaz, M. H. Arslan, and H. H. Korkmaz, “Buildings damages after elazığ, turkey earthquake on January 24, 2020,” Nat. Hazards (Dordr.), vol. 109, no. 1, pp. 161–200, 2021.
- [5] H. E. Demirci, M. Karaman, and S. Bhattacharya, “A survey of damage observed in Izmir due to 2020 Samos-Izmir earthquake,” Nat. Hazards (Dordr.), 2021.
- [6] J. Xiao, Q. Deng, M. Hou, J. Shen, and O. Gencel, “Where are demolition wastes going: reflection and analysis of the February 6, 2023 earthquake disaster in Turkey,” Low-carbon Mater. Green Constr., vol. 1, no. 1, 2023.
- [7] KOERI, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, 2023. [Online]. Available: http://www.koeri.boun.edu.tr. [Accessed: 08-Oct-2024].
- [8] E. Işık, F. Avcil, A. Büyüksaraç, R. İzol, M. H. Arslan, C. Aksoylu, E. Harirchian, O. Eyisüren, E. Arkan, M. Ş. Güngür, M. Günay, and H. Ulutaş, “Structural damages in masonry buildings in Adıyaman during the Kahramanmaraş (Turkiye) earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023,” Engineering Failure Analysis, vol. 151, 2023, doi: 10.1016/j.engfailanal.2023.107405.
- [9] E. Altunsu, O. Güneş, S. Öztürk, S. Sorosh, A. Sarı, and S. T. Beeson, “Investigating the structural damage in Hatay province after Kahramanmaraş-Türkiye earthquake sequences, ” Engineering Failure Analysis, vol. 157, no. 107857, 2024.
- [10] I. Gkougkoustamos, P. Krassakis, G. Kalogeropoulou, and I. Parcharidis, “Correlation of Ground Deformation Induced by the 6 February 2023 M7. 8 and M7. 5 Earthquakes in Turkey Inferred by Sentinel-2 and Critical Exposure in Gaziantep and Kahramanmaraş Cities,” GeoHazards, vol. 4, no. 3, pp. 267–285, 2023.
- [11] A. I. Turan, A. Celik, A. Kumbasaroglu, and H. Yalciner, “Assessment of reinforced concrete building damages following the Kahramanmaraş earthquakes in Malatya, Turkey (February 6, 2023),” Engineering Science and Technology, an International Journal, vol. 54, 2023.
- [12] M. Yetkin, I. Ö. Dedeoğlu, and T. U. N. Ç. Gülen, “Kahramanmaraş twin earthquakes: Evaluation of ground motions and seismic performance of buildings for Elazığ, southeast of Türkiye,” Soil Dynamics and Earthquake Engineering, 2023.
- [13] Türkiye Cumhuriyeti Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı, “Kahramanmaraş ve Hatay Depremleri Yeniden İmar ve Gelişme Raporu,” https://www.sbb.gov.tr, 2024. [Online]. Available: https://www.sbb.gov.tr/wp-content/uploads/2024/02/Kahramanmaras-ve-Hatay-Depremleri-Yeniden-Imar-ve-Gelisme-Raporu-1.pdf. [Accessed: 25-Nov-2024].
- [14] F. Wang et al., “Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan,” PLoS One, vol. 16, no. 4, p. e0249694, 2021
- [15] H. Bayram, T. Rastgeldi Dogan, Ü. A. Şahin, and C. A. Akdis, “Environmental and health hazards by massive earthquakes,” Allergy, vol. 78, no. 8, pp. 2081–2084, 2023.
- [16] L. Sahakyan, N. Maghakyan, O. Belyaeva, G. Tepanosyan, M. Kafyan, and A. Saghatelyan, “Heavy metals in urban dust: contamination and health risk assessment: a case study from Gyumri, Armenia,” Arab. J. Geosci., vol. 9, no. 2, 2016.
- [17] F. Azarmi and P. Kumar, “Ambient exposure to coarse and fine particle emissions from building demolition,” Atmos. Environ. (1994), vol. 137, pp. 62–79, 2016.
- [18] M. Normohammadi, H. Kakooei, L. Omidi, S. Yari, and R. Alimi, “Risk assessment of exposure to silica dust in building demolition sites,” Saf. Health Work, vol. 7, no. 3, pp. 251–255, 2016.
- [19] S. Mavroulis, M. Mavrouli, E. Lekkas, and A. Tsakris, “Managing earthquake debris: Environmental issues, health impacts, and risk reduction measures,” Environments, vol. 10, no. 11, p. 192, 2023.
- [20] “WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide,” World Health Organization, 2021.
- [21] J. Castagna, A. Senatore, M. Bencardino, and G. Mendicino, “Concurrent influence of different natural sources on the particulate matter in the central Mediterranean region during a wildfire season,” Atmosphere (Basel), vol. 12, no. 2, p. 144, 2021.
- [22] X. Zhang, L. Shen, and L. Zhang, “Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong,” Renew. Sustain. Energy Rev., vol. 17, pp. 160–169, 2013.
- [23] C. A. Pope 3rd et al., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” JAMA, vol. 287, no. 9, pp. 1132–1141, 2002.
- [24] R. W. Atkinson, I. M. Carey, A. J. Kent, T. P. van Staa, H. R. Anderson, and D. G. Cook, “Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort,” Occup. Environ. Med., vol. 72, no. 1, pp. 42–48, 2015.
- [25] I.-S. Kim et al., “Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study,” J. Cardiol., vol. 75, no. 5, pp. 549–558, 2020.
- [26] W. R. Wan Mahiyuddin, R. Ismail, N. Mohammad Sham, N. I. Ahmad, and N. M. N. Nik Hassan, “Cardiovascular and respiratory health effects of fine particulate matters (PM2.5): A review on time series studies,” Atmosphere (Basel), vol. 14, no. 5, p. 856, 2023.
- [27] M. Zieliński, M. Gąsior, D. Jastrzębski, A. Desperak, and D. Ziora, “Influence of particulate matter air pollution on exacerbation of chronic obstructive pulmonary disease depending on aerodynamic diameter and the time of exposure in the selected population with coexistent cardiovascular diseases,” Adv. Respir. Med., vol. 86, no. 5, pp. 227–233, 2018.
- [28] M. D. Petersen et al., “The 2023 US 50-state National Seismic Hazard Model: Overview and implications,” Earthq. Spectra, vol. 40, no. 1, pp. 5–88, 2024.
- [29] C. Wu, F. Lan, and B. Chen et al. “Respiratory symptoms among search and rescue workers who responded to the 2016 Taiwan earthquake “Occupational and Environmental Medicine, vol. 75, pp. 639–646, 2018.
- [30] E. Cook, C. A. Velis, and L. Black, “Construction and demolition waste management: A systematic scoping review of risks to occupational and public health,” Front. Sustain., vol. 3, 2022.
- [31] İ. Demir, “The use of demolition waste in concrete production and its effect on physical and mechanical properties,” AKÜ, vol. 9, no. 2, pp. 105–114, 2009.
- [32] A. C. McFarlane, “Family functioning and overprotection following a natural disaster: the longitudinal effects of post-traumatic morbidity,” Aust. N. Z. J. Psychiatry, vol. 21, no. 2, pp. 210–218, 1987.
- [33] B. Ozkan and F. C. Kutun, “Disaster psychology,” J Health Academicians, vol. 8, pp. 249–256, 2021.
- [34] M. Kerkez and M. E. Şanli, “Mediating role of spirituality in the relationship of anxiety, stress and depression with resilience in individuals exposed to earthquakes in Türkiye,” Int. J. Disaster Risk Reduct., vol. 104, no. 104347, p. 104347, 2024.
- [35] W. M. Marine, D. Gurr, and M. Jacobsen, “Clinically important respiratory effects of dust exposure and smoking in British coal miners,” Am. Rev. Respir. Dis., vol. 137, no. 1, pp. 106–112, 1988.
2023 Kahramanmaraş Depremleri Sırasında Bina Çökmeleri Sonucu Oluşan Solunabilir Tozlara Farklı Grupların Maruziyet Düzeylerinin Değerlendirilmesi
Year 2024,
, 1271 - 1281, 31.12.2024
Tuba Rastgeldi Dogan
,
Ali Süzergöz
Abstract
Depremlerin anlık yıkıcı etkilerinin yanı sıra, binaların yıkımı sırasında oluşan tozlardan kaynaklanan sağlık problemleri gibi uzun vadeli sorunlar da ortaya çıkmaktadır. Çalışmamız, bu tozların bireyler üzerindeki algısal etkilerini analiz etmeyi amaçlamıştır. Üç grup arasında toza maruz kalma derecesini değerlendirmek üzere bir anket gerçekleştirilmiştir: a. Yıkım görevlileri (YG), b. Çevre güvenliği görevlileri (ÇG), ve c. Yıkım sırasında mevcut olan bireyler (ÇB). Katılımcılar demografik verilerini sundu ve toz maruziyet seviyeleri hakkında 28 soru yanıtladı. Bina yıkımı esnasında ortaya çıkan tozlardan hem fizyolojik hem de psikolojik anlamda en çok ÇG grubu etkilenirken YG ve ÇB gruplarına ait bireylerin maruziyetten daha az etkilendikleri belirlenmiştir. Özellikle solunum sistemiyle ilgili sağlık sorunları anlamlı bir şekilde yüksek bulunmuştur. Yıkım esnasında toza maruziyet ve koruyucu ekipman açısından ÇG grubunun daha duyarlı olduğu ortaya çıkmıştır. Her üç grup tarafından koruyucu önlemlerin yetersizliği vurgulanmıştır. Çalışmamız sonucunda YG ve ÇB gruplarına ait bireylerin yıkım esnasında çıkan tozlara maruziyetin solunum sistemine etkileri konusunda yeterince bilgi sahibi olmadıkları ve koruyucu önlemlere başvurmakta ilgisiz kaldıkları bununla birlikte eğitim düzeyi yüksek olan ÇG grubuna ait bireylerin daha duyarlı olduğu, fakat genel olarak koruyucu önlemlere özen göstermenin yetersiz kaldığı tespit edilmiştir.
Ethical Statement
Yazarlar tüm etik standartlara uyduklarını beyan ederler.
Supporting Institution
TÜBİTAK (TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı)
Project Number
1919B012317689
Thanks
Bu çalışma TÜBİTAK 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı (Proje No: 1919B012317689) tarafından desteklenmiştir. TÜBİTAK'a destekleri için teşekkür etmek isteriz. Ayrıca Türkiye Cumhuriyeti Çevre, Şehircilik ve İklim Değişikliği Başkanlığı'na ve Şanlıurfa, Adıyaman ve Kahramanmaraş valiliklerine çalışmamıza sağladıkları katkı ve destek için teşekkür etmek isteriz.
References
- [1] E. Işık, E. Harirchian, A. Büyüksaraç, and Y. Levent Ekinci, “Seismic and structural analyses of the Eastern Anatolian Region (Turkey) using different probabilities of exceedance,” Appl. Syst. Innov., vol. 4, no. 4, p. 89, 2021.
- [2] M. Sahin, E. Tari, “The August 17 Kocaeli and the November 12 Duzce earthquakes in Turkey,” jstage, vol. 52, no. 10, pp. 753–757, 2000.
- [3] M. Erdik, Y. Kamer, M. Demircioğlu, and K. Şeşetyan, “23 October 2011 Van (Turkey) earthquake,” Nat. Hazards (Dordr.), vol. 64, no. 1, pp. 651–665, 2012.
- [4] G. Dogan, A. S. Ecemis, S. Z. Korkmaz, M. H. Arslan, and H. H. Korkmaz, “Buildings damages after elazığ, turkey earthquake on January 24, 2020,” Nat. Hazards (Dordr.), vol. 109, no. 1, pp. 161–200, 2021.
- [5] H. E. Demirci, M. Karaman, and S. Bhattacharya, “A survey of damage observed in Izmir due to 2020 Samos-Izmir earthquake,” Nat. Hazards (Dordr.), 2021.
- [6] J. Xiao, Q. Deng, M. Hou, J. Shen, and O. Gencel, “Where are demolition wastes going: reflection and analysis of the February 6, 2023 earthquake disaster in Turkey,” Low-carbon Mater. Green Constr., vol. 1, no. 1, 2023.
- [7] KOERI, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, 2023. [Online]. Available: http://www.koeri.boun.edu.tr. [Accessed: 08-Oct-2024].
- [8] E. Işık, F. Avcil, A. Büyüksaraç, R. İzol, M. H. Arslan, C. Aksoylu, E. Harirchian, O. Eyisüren, E. Arkan, M. Ş. Güngür, M. Günay, and H. Ulutaş, “Structural damages in masonry buildings in Adıyaman during the Kahramanmaraş (Turkiye) earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023,” Engineering Failure Analysis, vol. 151, 2023, doi: 10.1016/j.engfailanal.2023.107405.
- [9] E. Altunsu, O. Güneş, S. Öztürk, S. Sorosh, A. Sarı, and S. T. Beeson, “Investigating the structural damage in Hatay province after Kahramanmaraş-Türkiye earthquake sequences, ” Engineering Failure Analysis, vol. 157, no. 107857, 2024.
- [10] I. Gkougkoustamos, P. Krassakis, G. Kalogeropoulou, and I. Parcharidis, “Correlation of Ground Deformation Induced by the 6 February 2023 M7. 8 and M7. 5 Earthquakes in Turkey Inferred by Sentinel-2 and Critical Exposure in Gaziantep and Kahramanmaraş Cities,” GeoHazards, vol. 4, no. 3, pp. 267–285, 2023.
- [11] A. I. Turan, A. Celik, A. Kumbasaroglu, and H. Yalciner, “Assessment of reinforced concrete building damages following the Kahramanmaraş earthquakes in Malatya, Turkey (February 6, 2023),” Engineering Science and Technology, an International Journal, vol. 54, 2023.
- [12] M. Yetkin, I. Ö. Dedeoğlu, and T. U. N. Ç. Gülen, “Kahramanmaraş twin earthquakes: Evaluation of ground motions and seismic performance of buildings for Elazığ, southeast of Türkiye,” Soil Dynamics and Earthquake Engineering, 2023.
- [13] Türkiye Cumhuriyeti Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı, “Kahramanmaraş ve Hatay Depremleri Yeniden İmar ve Gelişme Raporu,” https://www.sbb.gov.tr, 2024. [Online]. Available: https://www.sbb.gov.tr/wp-content/uploads/2024/02/Kahramanmaras-ve-Hatay-Depremleri-Yeniden-Imar-ve-Gelisme-Raporu-1.pdf. [Accessed: 25-Nov-2024].
- [14] F. Wang et al., “Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan,” PLoS One, vol. 16, no. 4, p. e0249694, 2021
- [15] H. Bayram, T. Rastgeldi Dogan, Ü. A. Şahin, and C. A. Akdis, “Environmental and health hazards by massive earthquakes,” Allergy, vol. 78, no. 8, pp. 2081–2084, 2023.
- [16] L. Sahakyan, N. Maghakyan, O. Belyaeva, G. Tepanosyan, M. Kafyan, and A. Saghatelyan, “Heavy metals in urban dust: contamination and health risk assessment: a case study from Gyumri, Armenia,” Arab. J. Geosci., vol. 9, no. 2, 2016.
- [17] F. Azarmi and P. Kumar, “Ambient exposure to coarse and fine particle emissions from building demolition,” Atmos. Environ. (1994), vol. 137, pp. 62–79, 2016.
- [18] M. Normohammadi, H. Kakooei, L. Omidi, S. Yari, and R. Alimi, “Risk assessment of exposure to silica dust in building demolition sites,” Saf. Health Work, vol. 7, no. 3, pp. 251–255, 2016.
- [19] S. Mavroulis, M. Mavrouli, E. Lekkas, and A. Tsakris, “Managing earthquake debris: Environmental issues, health impacts, and risk reduction measures,” Environments, vol. 10, no. 11, p. 192, 2023.
- [20] “WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide,” World Health Organization, 2021.
- [21] J. Castagna, A. Senatore, M. Bencardino, and G. Mendicino, “Concurrent influence of different natural sources on the particulate matter in the central Mediterranean region during a wildfire season,” Atmosphere (Basel), vol. 12, no. 2, p. 144, 2021.
- [22] X. Zhang, L. Shen, and L. Zhang, “Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong,” Renew. Sustain. Energy Rev., vol. 17, pp. 160–169, 2013.
- [23] C. A. Pope 3rd et al., “Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution,” JAMA, vol. 287, no. 9, pp. 1132–1141, 2002.
- [24] R. W. Atkinson, I. M. Carey, A. J. Kent, T. P. van Staa, H. R. Anderson, and D. G. Cook, “Long-term exposure to outdoor air pollution and the incidence of chronic obstructive pulmonary disease in a national English cohort,” Occup. Environ. Med., vol. 72, no. 1, pp. 42–48, 2015.
- [25] I.-S. Kim et al., “Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study,” J. Cardiol., vol. 75, no. 5, pp. 549–558, 2020.
- [26] W. R. Wan Mahiyuddin, R. Ismail, N. Mohammad Sham, N. I. Ahmad, and N. M. N. Nik Hassan, “Cardiovascular and respiratory health effects of fine particulate matters (PM2.5): A review on time series studies,” Atmosphere (Basel), vol. 14, no. 5, p. 856, 2023.
- [27] M. Zieliński, M. Gąsior, D. Jastrzębski, A. Desperak, and D. Ziora, “Influence of particulate matter air pollution on exacerbation of chronic obstructive pulmonary disease depending on aerodynamic diameter and the time of exposure in the selected population with coexistent cardiovascular diseases,” Adv. Respir. Med., vol. 86, no. 5, pp. 227–233, 2018.
- [28] M. D. Petersen et al., “The 2023 US 50-state National Seismic Hazard Model: Overview and implications,” Earthq. Spectra, vol. 40, no. 1, pp. 5–88, 2024.
- [29] C. Wu, F. Lan, and B. Chen et al. “Respiratory symptoms among search and rescue workers who responded to the 2016 Taiwan earthquake “Occupational and Environmental Medicine, vol. 75, pp. 639–646, 2018.
- [30] E. Cook, C. A. Velis, and L. Black, “Construction and demolition waste management: A systematic scoping review of risks to occupational and public health,” Front. Sustain., vol. 3, 2022.
- [31] İ. Demir, “The use of demolition waste in concrete production and its effect on physical and mechanical properties,” AKÜ, vol. 9, no. 2, pp. 105–114, 2009.
- [32] A. C. McFarlane, “Family functioning and overprotection following a natural disaster: the longitudinal effects of post-traumatic morbidity,” Aust. N. Z. J. Psychiatry, vol. 21, no. 2, pp. 210–218, 1987.
- [33] B. Ozkan and F. C. Kutun, “Disaster psychology,” J Health Academicians, vol. 8, pp. 249–256, 2021.
- [34] M. Kerkez and M. E. Şanli, “Mediating role of spirituality in the relationship of anxiety, stress and depression with resilience in individuals exposed to earthquakes in Türkiye,” Int. J. Disaster Risk Reduct., vol. 104, no. 104347, p. 104347, 2024.
- [35] W. M. Marine, D. Gurr, and M. Jacobsen, “Clinically important respiratory effects of dust exposure and smoking in British coal miners,” Am. Rev. Respir. Dis., vol. 137, no. 1, pp. 106–112, 1988.