Research Article
BibTex RIS Cite

New Experimental Approaches to Sand Hardening by Microbial Biocalcification

Year 2020, , 390 - 401, 13.03.2020
https://doi.org/10.17798/bitlisfen.570061

Abstract

In
recent years there has been a rapid growth in the construction sector in order
to meet the need for housing with the increase in population. This growth led
to the rapid development of the cement industry. In the process of increasing
industrialization, biotechnological processes are becoming more important. The
most important alternative of the cement industry is the microbial
bio-calcification processes. In this process, cement-like structures are
produced by bacteria at room temperature conditions. Microbial
bio-calcification processes have attracted the interest of researchers
especially in the process of self-healing in recent years as an alternative and
nature-friendly solution to the cement processes that are being produced at
high temperatures. This study presents a comparative study for sand hardening
by microbial bio-calcification process. Different production surfaces was used
for sand hardening with Sporosarcina
pasteurii
such as agar plates, filter paper and polyurethane support
materials. The effect of different CaCl2 concentrations (25 mM, 50
mM and 100 mM) and sand thickness (1mm, 5mm and 10 mm) was also tested. CaCO3
was determined by FTIR and measured by chemical analysis. In addition, the
hardness and integrity of the samples were observed. Agar and polyurethane
support materials were found to be more effective in terms of support material
for sand hardening. Increased thickness reduced the hardness and 50 mM CaCl2
concentration was found to be optimum for these types of processes. This study
shows the effects of sand hardness on innovative, environmentally friendly  and biotechnological approach optimization.

Supporting Institution

TUBİTAK

Project Number

2209A

Thanks

The authors wish to thank TUBITAK for financial support under 2209A programme.

References

  • [1]Alam, A. Naseer, and Shah A. 2015. Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, v77 :154–159. (https://doi.org/10.1016/j.conbuildmat.2014.12.046)
  • [2]Türkiye Cumhuriyeti Ekonomi Bakanlığı İhracat Genel Müdürlüğü Kimya Ürünleri ve Özel İhracat Daire Başkanlığı. “Çimento Sektör Raporu”. Ankara, Turkey, 2016. (https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Cimento.pdf)
  • [3] Wiktor V. and Jonkers, H. M. 2011. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33 (7) : 763–770. (https://doi.org/10.1016/j.cemconcomp.2011.03.012)
  • [4] Türkkan A. 2015.Çimento Fabrikalarının Sağlık Etkileri". Türk Tabipler Birliği Bursa Tabip Odası, Bursa, Turkey, 1-36. https://www.researchgate.net/profile/Alpaslan_Turkkan/publication/312627595_Cimento_Fabrikalarinin_Saglik_Etkileri/links/58872dfe4585150dde4c8903/Cimento-Fabrikalarinin-Saglik-Etkileri.pdf
  • [5] Minke G.2012.Building With Earth Design and Technology of a Sustainable Architecture. Birkhauser Basel: Walter de Gruyter.
  • [6] Fjørtoft J. and Sageie J. 2000. The natural environment as a playground for children. Landscape and Urban Planning, 48 (1) : 83–97. (https://doi.org/10.1016/S0169-2046(00)00045-1)
  • [7] Taya M. 2003. Bio-inspired design of intelligent materials. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), 50 (51): 54–66.https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5051/0000/Bio-inspired-design-of-intelligent-materials/10.1117/12.484425.short
  • [8] Siddique R.and Chahal N.K. 2011. Effect of ureolytic bacteria on concrete properties. Construction and Building Materials 25 (10): 3791–3801.( https://doi.org/10.1016/j.conbuildmat.2011.04.010)
  • [9] Olivera-Severo D., Wassermann G., and Carlini C.2006. Bacillus pasteurii urease shares with plant ureases the ability to induce aggregation of blood platelets. Archives of Biochemistry and Biophysics, 452 (2) : 149–155. (https://doi.org/10.1016/j.abb.2006.06.001)
  • [10] Stocks-Fischer S. , Galinat J.K., and Bang S.S. 1999 .Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31( 11): 1563–1571. (https://doi.org/10.1016/S0038-0717(99)00082-6)
  • [11] Yoon J. H., Lee K. C., Weiss N., Kho Y. H., Kang K. H., and Park Y. H.2001. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina,” International Journal Of Systematic And Evolutionary Microbiology, 51( 3): 1079–1086. (https://doi.org/10.1099/00207713-51-3-1079)
  • [12] Wiley W. R., Stokes J. L. 1962. Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteuri. Journal of Bacteriology, 84(4):730-734.(https://jb.asm.org/content/jb/84/4/730.full.pdf)
  • [13] Chunxiang Q., Jianyun W., Ruixing R., and Liang C.2009.Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C, 29(4): 1273–1280.(https://doi.org/10.1016/j.msec.2008.10.025)
  • [14] Wang J, Tittelboom K. V., Belie N. D., and Verstraete W. 2012. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. 26 (1): 532–540. (https://doi.org/10.1016/j.conbuildmat.2011.06.054)
  • [15] Jonkers H.M., Schlangen E. 2007. Crack repair by concrete-immobilized bacteria. In Proceedings of the first international conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18-20 April. (http://extras.springer.com/2007/978-1-4020-6250-6/documents/9.pdf)
  • [16] Eryürük K., Yang S., Suzuki D. ,Sakaguchi X., Akatsuka T., Tsuchiya T., and Katayama A.2015. Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii. Journal of Bioscience and Bioengineering, 119 (3): 331–336. (https://doi.org/10.1016/j.jbiosc.2014.08.009)
  • [17]. Webbook.nist.gov. (2019). Calcium carbonate (precipitated). [online] Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80) [Accessed 1 Apr. 2019]. (https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80)
  • [18]Sarmast M., Farpoor M.H., Sarcheshmehpoor M., Eghbal M.K..2014. Micromorphological and biocalcification effects of Sporosarcina pasteurii and Sporosarcina ureae in sandy soil columns. Journal of Agricultural Science and Technology, 16 (3): 681-693. http://mjms.modares.ac.ir/article-23-7564-en.pdf
  • [19] Bhaduri S., Debnath N., Mitra S., Liu Y., and Kumar A. 2016. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. Journal of Visualized Experiments. 110:54-63.(https://doi.org/10.3791/53253)
  • [20] Okwadha G.D. and Li J. 2010. Optimum conditions for microbial carbonate precipitation Chemosphere, 81 (9). 1143–1148. (https://doi.org/10.1016/j.chemosphere.2010.09.066)
  • [21] AchalV., Mukherjee A., Reddy M.S.2010. Microbial concrete: way to enhance the durability of building structures. Journal of Materials in Civil Engineering. 23, (6): 730-734. https://ascelibrary.org/doi.org/10.1061/(ASCE)MT.1943-5533.0000159

New Experimental Approaches to Sand Hardening by Microbial Biocalcification

Year 2020, , 390 - 401, 13.03.2020
https://doi.org/10.17798/bitlisfen.570061

Abstract

Son
yıllarda nüfustaki artışla birlikte barınma ihtiyacının giderilmesi için inşaat
sektöründe hızlı bir büyüme olmuştur. Bu büyüme beraberinde çimento
endüstrisinde hızlı gelişimi getirmiştir. Artan endüstrileşme sürecinde
biyoteknolojik süreçler her geçen gün daha fazla önem kazanmaktadır. Çimento
endüstrisinin en önemli alternatifi mikrobiyal biyokalsifikasyon prosesleridir.
Bu proseste çimento benzeri yapılar oda sıcaklığı koşullarında bakteriler
tarafından üretilmektedirler. Mikrobiyal biyo-kalsifikasyon prosesleri yüksek
sıcaklıklarda üretimi gerçekleşen çimento proseslerine alternatif ve doğa dostu
bir çözüm olarak son yıllarda araştırmacıların ilgisini özellikle kendi kendine
iyileşme sürecinde çekmiştir. Bu çalışma kapsamında mikrobiyal biyo-kalsifikasyon
işlemiyle kum sertleşmesinde farklı üretim yüzeyleri karşılaştırılmıştır. Agar,
filtre kağıdı ve poliüretan destek malzemeleri kullanılarak Sporosarcina pasteurii ile kum
sertleştirmesi proses verimleri incelenmiştir. Farklı CaCl2
konsantrasyonlarının (25 mM, 50 mM ve 100 mM) ve kum kalınlığının (1 mm, 5 mm
ve 10 mm) etkisi de test edilmiştir. CaCO3 varlığı FTIR testleri ile
belirlenmiş ve konsantrasyon karşılaştırmaları kimyasal yöntemlerle
yapılmıştır. Ek olarak, numunelerin sertliği ve bütünlüğü de gözlenerek en
uygun üretim yüzeyi karşılaştırmalı olarak incelenmiştir.  Sonuç olarak agar ve poliüretan destek
malzemelerinin, kum sertleşmesinde destek malzemesi açısından daha etkili
olduğu bulunmuştur. Artan kum kalınlığının sertliği azalttığı ve 50 mM CaCl2
konsantrasyonunun optimum miktar olduğu belirlenmiştir. Bu çalışma yapı sektörü
ve çimento sektörü açısından yenilikçi, çevre dostu ve biyoteknolojik bir
yöntemin optimizasyonu niteliğindedir.

Project Number

2209A

References

  • [1]Alam, A. Naseer, and Shah A. 2015. Economical stabilization of clay for earth buildings construction in rainy and flood prone areas. Construction and Building Materials, v77 :154–159. (https://doi.org/10.1016/j.conbuildmat.2014.12.046)
  • [2]Türkiye Cumhuriyeti Ekonomi Bakanlığı İhracat Genel Müdürlüğü Kimya Ürünleri ve Özel İhracat Daire Başkanlığı. “Çimento Sektör Raporu”. Ankara, Turkey, 2016. (https://ticaret.gov.tr/data/5b87000813b8761450e18d7b/Cimento.pdf)
  • [3] Wiktor V. and Jonkers, H. M. 2011. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33 (7) : 763–770. (https://doi.org/10.1016/j.cemconcomp.2011.03.012)
  • [4] Türkkan A. 2015.Çimento Fabrikalarının Sağlık Etkileri". Türk Tabipler Birliği Bursa Tabip Odası, Bursa, Turkey, 1-36. https://www.researchgate.net/profile/Alpaslan_Turkkan/publication/312627595_Cimento_Fabrikalarinin_Saglik_Etkileri/links/58872dfe4585150dde4c8903/Cimento-Fabrikalarinin-Saglik-Etkileri.pdf
  • [5] Minke G.2012.Building With Earth Design and Technology of a Sustainable Architecture. Birkhauser Basel: Walter de Gruyter.
  • [6] Fjørtoft J. and Sageie J. 2000. The natural environment as a playground for children. Landscape and Urban Planning, 48 (1) : 83–97. (https://doi.org/10.1016/S0169-2046(00)00045-1)
  • [7] Taya M. 2003. Bio-inspired design of intelligent materials. Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), 50 (51): 54–66.https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5051/0000/Bio-inspired-design-of-intelligent-materials/10.1117/12.484425.short
  • [8] Siddique R.and Chahal N.K. 2011. Effect of ureolytic bacteria on concrete properties. Construction and Building Materials 25 (10): 3791–3801.( https://doi.org/10.1016/j.conbuildmat.2011.04.010)
  • [9] Olivera-Severo D., Wassermann G., and Carlini C.2006. Bacillus pasteurii urease shares with plant ureases the ability to induce aggregation of blood platelets. Archives of Biochemistry and Biophysics, 452 (2) : 149–155. (https://doi.org/10.1016/j.abb.2006.06.001)
  • [10] Stocks-Fischer S. , Galinat J.K., and Bang S.S. 1999 .Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31( 11): 1563–1571. (https://doi.org/10.1016/S0038-0717(99)00082-6)
  • [11] Yoon J. H., Lee K. C., Weiss N., Kho Y. H., Kang K. H., and Park Y. H.2001. Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina,” International Journal Of Systematic And Evolutionary Microbiology, 51( 3): 1079–1086. (https://doi.org/10.1099/00207713-51-3-1079)
  • [12] Wiley W. R., Stokes J. L. 1962. Requirement of an alkaline pH and ammonia for substrate oxidation by Bacillus pasteuri. Journal of Bacteriology, 84(4):730-734.(https://jb.asm.org/content/jb/84/4/730.full.pdf)
  • [13] Chunxiang Q., Jianyun W., Ruixing R., and Liang C.2009.Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Materials Science and Engineering: C, 29(4): 1273–1280.(https://doi.org/10.1016/j.msec.2008.10.025)
  • [14] Wang J, Tittelboom K. V., Belie N. D., and Verstraete W. 2012. Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. 26 (1): 532–540. (https://doi.org/10.1016/j.conbuildmat.2011.06.054)
  • [15] Jonkers H.M., Schlangen E. 2007. Crack repair by concrete-immobilized bacteria. In Proceedings of the first international conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18-20 April. (http://extras.springer.com/2007/978-1-4020-6250-6/documents/9.pdf)
  • [16] Eryürük K., Yang S., Suzuki D. ,Sakaguchi X., Akatsuka T., Tsuchiya T., and Katayama A.2015. Reducing hydraulic conductivity of porous media using CaCO3 precipitation induced by Sporosarcina pasteurii. Journal of Bioscience and Bioengineering, 119 (3): 331–336. (https://doi.org/10.1016/j.jbiosc.2014.08.009)
  • [17]. Webbook.nist.gov. (2019). Calcium carbonate (precipitated). [online] Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80) [Accessed 1 Apr. 2019]. (https://webbook.nist.gov/cgi/cbook.cgi?ID=C471341&Mask=80)
  • [18]Sarmast M., Farpoor M.H., Sarcheshmehpoor M., Eghbal M.K..2014. Micromorphological and biocalcification effects of Sporosarcina pasteurii and Sporosarcina ureae in sandy soil columns. Journal of Agricultural Science and Technology, 16 (3): 681-693. http://mjms.modares.ac.ir/article-23-7564-en.pdf
  • [19] Bhaduri S., Debnath N., Mitra S., Liu Y., and Kumar A. 2016. Microbiologically Induced Calcite Precipitation Mediated by Sporosarcina pasteurii. Journal of Visualized Experiments. 110:54-63.(https://doi.org/10.3791/53253)
  • [20] Okwadha G.D. and Li J. 2010. Optimum conditions for microbial carbonate precipitation Chemosphere, 81 (9). 1143–1148. (https://doi.org/10.1016/j.chemosphere.2010.09.066)
  • [21] AchalV., Mukherjee A., Reddy M.S.2010. Microbial concrete: way to enhance the durability of building structures. Journal of Materials in Civil Engineering. 23, (6): 730-734. https://ascelibrary.org/doi.org/10.1061/(ASCE)MT.1943-5533.0000159
There are 21 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Alpcan Arıç This is me 0000-0002-9542-1654

İrem Deniz 0000-0002-1171-8259

Tuğba Keskin Gündoğdu 0000-0001-9354-7774

Project Number 2209A
Publication Date March 13, 2020
Submission Date May 25, 2019
Acceptance Date September 23, 2019
Published in Issue Year 2020

Cite

IEEE A. Arıç, İ. Deniz, and T. Keskin Gündoğdu, “New Experimental Approaches to Sand Hardening by Microbial Biocalcification”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 390–401, 2020, doi: 10.17798/bitlisfen.570061.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS