Research Article
BibTex RIS Cite

3D Yazılmış Açık Kaynak Kodlu İnsansı Robot Tasarımı

Year 2022, , 411 - 420, 30.06.2022
https://doi.org/10.17798/bitlisfen.998006

Abstract

Günümüzde, insanlara hizmet etmek için çeşitli amaçlarla kullanılan büyük yeteneklere sahip insansı robotlar, hayatımızın ayrılmaz bir parçası haline gelmiştir. Bu çalışmada, açık kaynaklı bir 3D yazıcı ile üretilen düşük maliyetli bir insansı robot geliştirdik. İlk olarak, insansı robotun 3D-CAD modeli, Fransız bir heykeltıraş ve tasarımcı olan Gael Langevin tarafından tasarlanan “InMoov” projesine ait kaynak kodları kullanılarak meydana getirildi. İnsansı robot, PLA (Poli-Laktik Asit) hammaddesine dayanan yaklaşık 685 adet parça içerir. Bundan sonra, python programlama dili ile kontrol edilen gömülü kontrolörler mimarisine dayanan yeni bir elektronik sistem tasarlandı. Sesli komutların yardımıyla kontrol edilen bu robotik platform, insanlarla iletişim kurma yeteneğine sahiptir. Ayrıca bu çalışmada, akıllı bir eldivenden aldığı komutlara göre, nesneleri kavrayabilen, tutabilen yetenekli protez bir el özel olarak geliştirilmiştir. Geliştirilen bu insansı robot, mevcut ticari tabanlı insansı robotlar ile karşılaştırıldığında, sadece düşük maliyetli değil aynı zamanda yeni gelişmelere de açık olan bir altyapıya sahiptir.

References

  • [1] Rodriguez N., Carbone G., Ceccarelli M. 2006. Antropomorphic design and operation of a new low-cost humanoid robot. The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy.
  • [2] Kaplan F. 2004. Who is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptation of Robots. International Journal of Humanoid Robotics, 1(3): 465-480.
  • [3] Cheng H., Ji G. 2016. Design and Implementation of a Low Cost 3D Printed Humanoid Robotic Platform. The 6th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), Chengdu, China.
  • [4] Sakagami Y., Watanabe R., Aoyama C., Matsunaga S., Higaki N., Fujimura K. 2002. The intelligent ASIMO: system overview and integration. Intelligent Robots and Systems, Lausanne, Switzerland.
  • [5] Kaneko K., Kanehiro F., Kajita S., Yokoyama K., Akachi K., Kawasaki T., Ota S., Isozumi T. 2002. Design of prototype humanoid robotics platform for HRP. Intelligent Robots and Systems, Lausanne, Switzerland.
  • [6] Carbone G., Lim H.O., Takanishi A., Ceccarelli M. 2003. Numerical and experimental estimation of stiffness performances for the humanoid robot WABIAN-RV. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Port Island, Kobe, Japan.
  • [7] Recio D.L., Segura L. M., Segura E.M., Waern A. 2013. The NAO models for the elderly. 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan.
  • [8] Lafaye J., Gouaillier D., Wieber P.B. 2014. Linear model predictive control of the locomotion of pepper, a humanoid robot with omnidirectional wheels. IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain.
  • [9] Kim J.H., Oh J.H. 2003. Torque Feedback Control of the Humanoid Platform KHR-1. 3rd IEEE International Conference on Humanoid Robots, Karlsruhe and Munich, Germany.
  • [10] Hackel M., Schwope S. 2004. A Humanoid Interaction Robot for Information, Negotiation and Entertainment Use. International Journal of Humanoid Robotics; 1(3): 551-563.
  • [11] Ye D., Sun S., Chen J., Luo M. 2014. The lightweight design of the humanoid robot frameworks based on evolutionary structural optimization. IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia.
  • [12] Lens T., Stryk O. 2013. Design and Dynamics Model of a Lightweight Series Elastic Tendon-Driven Robot Arm. IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, German.
  • [13] Hagenaha H., Böhma W., Breitsprecherb T., Merkleina M., Artzackba S. 2013. Modelling, Construction and Manufacture of a Lightweight Robot Arm. Procedia CIRP Intelligent Computation in Manufacturing Engineering; 12:211 – 216.
  • [14] Bhattacharjee N., Urrios A., Kang S., Folch A. 2016. The Upcoming 3D-printing revolution in microfluidics. Lab on a Chip; 16(10): 1720 –1742.
  • [15] Takagishi K., Umezu S. 2017. Development of the Improving Process for the 3D Printed Structure. Scientific Reports; 7:39852.
  • [16] Bechthold L., Fischer V., Hainzlmaier A., Hugenroth D., Ivanova L., Kroth K., Römer B., Sikorska E., Sitzmann V. 2015. 3D printing: A qualitative assessment of applications, recent trends and the technology's future potential. Commission of Experts for Research and Innovation; 17:120, Berlin.
  • [17] Christiano, M. 2020. Introduction to 3D Printing: History, Processes, and Market Growth. Available at: https://www.allaboutcircuits.com/news/introduction-to-3d-printing-history-processes-and-market-growth. (Access date: 20.05.2020)
  • [18] Ashby M.F., Johnson K. 2013. Materials and Design, The Art and Scince of Material Selection in Product Design; Butterworth-Heinman: Oxford, UK.
  • [19] Drummer D., Cifuentes-Cuéllar S., Rietzel D. 2012. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal; 18(6):500-507.
  • [20] Chua C. K., Wong C. H., Yeong W.Y. 2017. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing; Academic Press: Elsevier.
  • [21] Inmoov- Open-source 3D printed life-size robot. Available at: http://inmoov.fr/build-yours. (Access date: 20.05.2020)
  • [22] The Raspberry Pi Model B Card Datasheets. Available at: https://www.raspberrypi.org/documentation/hardware/raspberrypi. (Access date: 20.05.2020)
  • [23] Arm Cortex-A53 MPCore Processor Technical Reference Manual. Available at: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500j/CHDDCDDG.html. (Access date: 20.05.2020)
  • [24] MG-996 High Speed Metal Gear Dual Ball Bearing Servo Motor Datasheet. Available at: http://www.towerpro.com.tw/product/mg995-robot-servo-180-rotation. (Access date: 20.05.2020)
  • [25] HS-805BB Servo Motor Datasheet. Available at: https://www.servocity.com/hs-805bb-servo (Access date: 20.05.2020)
  • [26] Firoozian R. 2014. Servo Motors and Industrial Control Theory; Springer: Berlin, Germany.
  • [27] Huang X, Li D. 2009. An Overview of Modern Speech Recognition. In Nitin I, Fred, J.D (Ed) Handbook of Natural Language Processing, 2nd Ed. Chapman & Hall/CRC, pp 339-367.
  • [28] Amos D, The Ultimate Guide to Speech Recognition with Python. Available at: https://realpython.com/python-speech-recognition. (Access date: 20.05.2020)

Design of a 3D Printed Open Source Humanoid Robot

Year 2022, , 411 - 420, 30.06.2022
https://doi.org/10.17798/bitlisfen.998006

Abstract

Nowadays, humanoid robots with great capabilities used in a variety of purposes to serve humans have become an integral part of our lives. In this study, we have developed a low-cost humanoid robot that can be fabricated with an open-source 3D printer. Firstly, the 3D-CAD model of the humanoid robot was created using source codes of the “InMoov” project which is originated by Gael Langevin who works as a designer on his project since 2012. The humanoid robot involves approximately 685 parts built from the PLA (Poly-Lactic Acid) raw material. After that, a new electronics system based on the embedded controllers which have been controlled with the python programming language has been designed. This robotic platform controlled with the help of voice commands has the capability to communicate with people. Furthermore, a skilled prosthetic hand controlled according to the commands from a smart glove, can grasp and holds objects, have been specially developed in this study. When comparing to the existing commercial humanoid robots, this humanoid robot developed as specific has a substructure which is not only low cost but also open to new improvements as well.

References

  • [1] Rodriguez N., Carbone G., Ceccarelli M. 2006. Antropomorphic design and operation of a new low-cost humanoid robot. The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy.
  • [2] Kaplan F. 2004. Who is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptation of Robots. International Journal of Humanoid Robotics, 1(3): 465-480.
  • [3] Cheng H., Ji G. 2016. Design and Implementation of a Low Cost 3D Printed Humanoid Robotic Platform. The 6th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), Chengdu, China.
  • [4] Sakagami Y., Watanabe R., Aoyama C., Matsunaga S., Higaki N., Fujimura K. 2002. The intelligent ASIMO: system overview and integration. Intelligent Robots and Systems, Lausanne, Switzerland.
  • [5] Kaneko K., Kanehiro F., Kajita S., Yokoyama K., Akachi K., Kawasaki T., Ota S., Isozumi T. 2002. Design of prototype humanoid robotics platform for HRP. Intelligent Robots and Systems, Lausanne, Switzerland.
  • [6] Carbone G., Lim H.O., Takanishi A., Ceccarelli M. 2003. Numerical and experimental estimation of stiffness performances for the humanoid robot WABIAN-RV. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Port Island, Kobe, Japan.
  • [7] Recio D.L., Segura L. M., Segura E.M., Waern A. 2013. The NAO models for the elderly. 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan.
  • [8] Lafaye J., Gouaillier D., Wieber P.B. 2014. Linear model predictive control of the locomotion of pepper, a humanoid robot with omnidirectional wheels. IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain.
  • [9] Kim J.H., Oh J.H. 2003. Torque Feedback Control of the Humanoid Platform KHR-1. 3rd IEEE International Conference on Humanoid Robots, Karlsruhe and Munich, Germany.
  • [10] Hackel M., Schwope S. 2004. A Humanoid Interaction Robot for Information, Negotiation and Entertainment Use. International Journal of Humanoid Robotics; 1(3): 551-563.
  • [11] Ye D., Sun S., Chen J., Luo M. 2014. The lightweight design of the humanoid robot frameworks based on evolutionary structural optimization. IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia.
  • [12] Lens T., Stryk O. 2013. Design and Dynamics Model of a Lightweight Series Elastic Tendon-Driven Robot Arm. IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, German.
  • [13] Hagenaha H., Böhma W., Breitsprecherb T., Merkleina M., Artzackba S. 2013. Modelling, Construction and Manufacture of a Lightweight Robot Arm. Procedia CIRP Intelligent Computation in Manufacturing Engineering; 12:211 – 216.
  • [14] Bhattacharjee N., Urrios A., Kang S., Folch A. 2016. The Upcoming 3D-printing revolution in microfluidics. Lab on a Chip; 16(10): 1720 –1742.
  • [15] Takagishi K., Umezu S. 2017. Development of the Improving Process for the 3D Printed Structure. Scientific Reports; 7:39852.
  • [16] Bechthold L., Fischer V., Hainzlmaier A., Hugenroth D., Ivanova L., Kroth K., Römer B., Sikorska E., Sitzmann V. 2015. 3D printing: A qualitative assessment of applications, recent trends and the technology's future potential. Commission of Experts for Research and Innovation; 17:120, Berlin.
  • [17] Christiano, M. 2020. Introduction to 3D Printing: History, Processes, and Market Growth. Available at: https://www.allaboutcircuits.com/news/introduction-to-3d-printing-history-processes-and-market-growth. (Access date: 20.05.2020)
  • [18] Ashby M.F., Johnson K. 2013. Materials and Design, The Art and Scince of Material Selection in Product Design; Butterworth-Heinman: Oxford, UK.
  • [19] Drummer D., Cifuentes-Cuéllar S., Rietzel D. 2012. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping Journal; 18(6):500-507.
  • [20] Chua C. K., Wong C. H., Yeong W.Y. 2017. Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing; Academic Press: Elsevier.
  • [21] Inmoov- Open-source 3D printed life-size robot. Available at: http://inmoov.fr/build-yours. (Access date: 20.05.2020)
  • [22] The Raspberry Pi Model B Card Datasheets. Available at: https://www.raspberrypi.org/documentation/hardware/raspberrypi. (Access date: 20.05.2020)
  • [23] Arm Cortex-A53 MPCore Processor Technical Reference Manual. Available at: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500j/CHDDCDDG.html. (Access date: 20.05.2020)
  • [24] MG-996 High Speed Metal Gear Dual Ball Bearing Servo Motor Datasheet. Available at: http://www.towerpro.com.tw/product/mg995-robot-servo-180-rotation. (Access date: 20.05.2020)
  • [25] HS-805BB Servo Motor Datasheet. Available at: https://www.servocity.com/hs-805bb-servo (Access date: 20.05.2020)
  • [26] Firoozian R. 2014. Servo Motors and Industrial Control Theory; Springer: Berlin, Germany.
  • [27] Huang X, Li D. 2009. An Overview of Modern Speech Recognition. In Nitin I, Fred, J.D (Ed) Handbook of Natural Language Processing, 2nd Ed. Chapman & Hall/CRC, pp 339-367.
  • [28] Amos D, The Ultimate Guide to Speech Recognition with Python. Available at: https://realpython.com/python-speech-recognition. (Access date: 20.05.2020)
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Levent Paralı 0000-0002-4462-7628

Ali Sarı 0000-0002-8928-2512

Mehmet Esen 0000-0002-6800-3801

Publication Date June 30, 2022
Submission Date September 20, 2021
Acceptance Date March 31, 2022
Published in Issue Year 2022

Cite

IEEE L. Paralı, A. Sarı, and M. Esen, “Design of a 3D Printed Open Source Humanoid Robot”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 2, pp. 411–420, 2022, doi: 10.17798/bitlisfen.998006.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr