Adli Bilimlerde DNA Parmak İzine Adli Genetik ve Adli Antropolojik Bakış
Year 2019,
Volume: 8 Issue: 4, 1545 - 1556, 24.12.2019
Elif Çetli
,
Demet Tatar
,
Vahdet Özkoçak
Abstract
Suç olaylarının
çözümlenmesinde ve suçlunun belirlenmesinde yardımcı olan Adli Bilimler alanı
gün geçtikçe önemini arttırmaktadır. Olay yerinden elde edilen deliller
aracılığı ile kişilerin tanımlanmasında her kişide farklı yapıya sahip olan DNA molekülü olayları
çözüme kavuşturmaktadır. Adli amaçlı
kullanılan DNA molekülü Adli Antropoloji ve Adli Genetik alanında kullanılan
ortak moleküldür. Antropoloji insan bilimidir ve insanı tüm yönleri ile ele
alır. Adli Antropoloji alanı ise suçlunun tespitinde, kimliği belirsiz
cesetlerin kimliklendirilmesinde, yaş, cinsiyet ve etnik kökenin
belirlenmesinde yardımcı olmaktadır. Antropoloji içerisinde kullanılan Antik
DNA sayesinde geçmiş ile günümüz arasında köprü kurulabilmektedir. Olay yerinde
her zaman vücut sıvısı veya biyolojik materyaller yer almaz. Bir iskelet
kalıntısından olayın çözümlenmesinde devreye Adli Antropoloji girmektedir.
İskeletleri kimliklendirme aşamasında Somostoskopi ve Antrometri teknikleri
kullanılmaktadır. Bu iki teknik Adli Antropoloji alanında önemli yere sahiptir.
Adli Genetik alanı ise olay yerinde bulunan vücut sıvıları ve biyolojik
materyaller ile ilgilenir. Bu sıvıları
laboratuvar testlerine tabii tutarak DNA analizlerinin sonuçlanmasını
sağlamaktadır. Her iki bilim dalının da suçlunun tespitinde DNA molekülünden
yararlandığı görülmektedir. DNA molekülünden elde edilen DNA parmak izi kişiye
özgüdür ve bu durum suçlu profillerinin belirlenmesi açısından muazzam bir
durumdur. DNA Parmak izi ile ilgili yeni gelişmeler söz konusudur. Yeni
geliştirilen Optik Koherans Tomografi Sistemi ve ParaDNA Vücut Sıvısı
Kimliklendirme Sistemi, DNA parmak izi üzerinde oldukça olumlu sonuçlar ortaya
koymaktadır. DNA’nın geri kazanımı ile ilgili çalışmalar sonucunda ise gizli
DNA parmak izi olarak tanımlanan izlerin kolayca elde edilebilmesi sağlanmaktadır.
Geri kazanım ile olayların çözümlenmesi kısa sürede olmakta ve bu durum birçok
laboratuvarın rutin sırasını değiştirmektedir. Aynı zamanda parmak izinin
alınması zor olan materyaller üzerinden
parmak izinin profillendirilmesine imkan sağlamaktadır.
References
- [1] Meyer E.F. 1997. The first years of the protein data bank. Protein Sci .6(7): 1591-1597.
- [2]. Crick F. 1970. Central dogma of molecular biology. Nature 227(5258): 561–563.
- [3]. Graw M., Setiz T. 2000. Y chromosomal short tandem repeat (str) loci in a representative group of males living in South Württeemberg: a database for application in forensic medicine. For.Sci.Int. 113: 43-46.
- [4]. Rudin N., Inman K, 2002. An introduction to forensic dna analysis.2th ed. Crc Press Boca .p. 53-90.
- [5]. Özkoçak V., Akın G., Gültekin T. 2017. Somatoskopi ve Antropometri Tekniklerinin Adli Bilimler İçin Önemi. Hitit Üniversitesi Sosyal Bilimler Dergisi. (10): 703-714.
- [6]. Çeker D. 2017. İnsan Kemiklerinin Analizi ve Adli Antropoloji’de Kimliklendirmede Önemi Masrop E – Dergi. 11(17): 8-13.
- [7]. Andelinovic S., Sutlovic D., Ivkosic I.E., Skaro V., Ivkosic A., Paic F., et al., 2005. Twelve-year experience in identification of skeletal remains from mass graves. Croatian Medical Journal. 46: 530-539.
- [8]. Goodwin W., Linacre A., Hadi S., 2007. An introduction to Forensic Genetics. 1st ed.John Wiley & Sons Ltd Published England .p.51-61.
- [9]. Hummel S. 2003. Ancient DNA typing: Methods, strategies and applications’’, 1th ed. Springer Verlag Publisher. Berlin .p.57-80.
- [10]. Pääbo S. 1985. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314(6012): 644-645.
- [11]. Singh J., Garg A. 2014. Ancient DNA analysis and ,its probable applications in Forensic Anthropology.J Punjab Acad Forensic Med Toxicol 14(1): 43-50.
- [12]. Stone A.C. 2008. DNA analysis of archaelogical remains. Chapter 15. Biological Anthropology of the Human Skeleton, Katzenberg M.A, Saunders S.R. p.461-482.
- [13]. Dib, C. 1996. A comprehensive genetic map of the human genom based on 5,264 Microsatellites. Nature (380):152-154.
- [14]. Kobilinsky L., Liotti T.F., Oeser-Sweat J. Forensic DNA analysis methods, DNA: forensic and legal applications, 1st ed. John Wiley & Sons, Inc Publication ;2005.p.70-73.
- [15]. James H.S., Nordby J.J., Bell S. 2014. Forensic Science: An intraduction to scientific and investigative techniques. 4th ed. Crc Press Florida. p.115-134.
- [16]. Gomolka M., Hundrieser J., Nürnberg P., Roewer L., Epplen J., T, Epplen C. 1994. Selected di- and tetranucleotide microsatellites from chromosomes 7, 12, 14, And Y in various Eurasian Populations. Hum. Genet. (93): 592–596.
- [17]. Schleif R. 1993. Genetics and molecular biology. 2th ed. The Johns Hopkins University Press Usa. p.698.
- [18]. International Human Genom Consortium. 2001 . Initial sequencing and analysis of human genom. Nature (409): 860–921.
- [19]. Butler J.M., Schoske R., Vallone P.M., Redman J.W., Kline M.C. 2003. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. Journal of Forensic Science .(48):908.
- [20]. Butler J.M. 2005. Forensic DNA typin .biology, technology, and genetics of STR Markers. 2 th ed. Elsevier Academic Press Burlington, MA, USA, p. 87-117.
- [21]. Szibor R. 2007. X-chromosomal markers: Past, present and future, Forensic Science International: Genetics (1):93–99.
- [22]. Szibor R., Krawzak M., Hering S., Edelmann J., Kuhlisch E., Krause D. 2003. Use of XLinked markers for Forensic purposes. International Journal of Legal Medicine (117): 67–74.
- [23]. Causin V. 2015. Polymers on the crime scene. Springer International Publishing. 105–166.
- [24]. Bramble S.K., Cantu A.A., Ramotowski R.S., Brennan J.S. 2000. Deep red to near infrared (NIR) fluorescence of gentian violet-treated latent prints. Journal Forensic Identif. 50 (1): 33–49.
- [25]. Choudhry M.Y., Whritenour R.D. 1990. A new approach to unraveling tangled adhesive tape for potential detection of latent prints and recovery of trace evidence. J. Forensic Sci. 35 (6): 1373–1383
- [26]. Fujimoto J.G., Pitris C., Boppart S.A. 2000. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2 (1–2): 9–25.
- [27]. Choi W.J., Min, G., Lee H.B. 2000. Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography. Journal of the Optical Society of Korea. 14 (4): 316-320.
- [28]. Zhang N., Wang C., Sun Z., Li Z., Xie L., Yan Y., et al. 2018. Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography. Forensic Science International 287: 81-87.
- [29]. Vennemann M., Scott G., Curran L., Bittner F., Tobe S.S,. 2014. Sensitivity and specificity of presumptive tests for blood, saliva and semen. Forensic Sci. Med. Pathol. 10: 69–75.
- [30]. Hanson E., Ballantyne J. 2013. Highly specific Mrna biomarkers for the identification of vaginal secretions in sexual assault investigation. Sci Justice 53. 14-22.
- [31]. Haas C., Hanson E.K., Morling N., Ballantyne J. 2011. Collaborative EDNAP exercises on messenger RNA/DNA co-analysis for body fluid identification (blood, saliva, semen) and STR profiling. Forensic Sci. Int.: Genet. Suppl. (3): 5-6.
- [32]. Blackman S., Allen B.S., Hanson E.K., Panasiuk M., Brooker A.L., Rendell P. 2018. Developmental validation of the ParaDNA body fluid ID system a rapid multiplex mRNA-profiling system for the forensic identification of body fluids. Forensic Science International: Genetics. 151-156.
- [33]. Sinelnikov, A., Reich, K. 2017.Materials and methods that allow fingerprint analysis and DNA profiling from the same latent evidence, Forensic Science International: Genetics Supplement Series 6, p. 40-42, Elsevier.
- [34]. Sewell, J., Quinones, I., Ames, C., Multoney, B., Curtis, S., Seeboruth, H., Moore, S., Daniel, B. 2008. Recovery of DNA and fingerprints from touched documents’’, Forensic Science International: Genetics 2, p. 281–285, Elsevier
- [35]. Feine, I., Shpitzen, M., Geller, B., Salmon, E., Peleg, T., Roth, J., Gafny, R. 2017. Acetone facilitated DNA sampling from electrical tapes improves DNA recovery and enables latent fingerprints development ‘’, Forensic Science International 276, p.107-110, Elsevier.
- [36]. Ostojic, L., Wurmbach, E. 02017. Analysis of fingerprint samples, testing various conditions, for forensic DNA identification’’, Science and Justice 57, p. 35-40, Elsevier
Year 2019,
Volume: 8 Issue: 4, 1545 - 1556, 24.12.2019
Elif Çetli
,
Demet Tatar
,
Vahdet Özkoçak
References
- [1] Meyer E.F. 1997. The first years of the protein data bank. Protein Sci .6(7): 1591-1597.
- [2]. Crick F. 1970. Central dogma of molecular biology. Nature 227(5258): 561–563.
- [3]. Graw M., Setiz T. 2000. Y chromosomal short tandem repeat (str) loci in a representative group of males living in South Württeemberg: a database for application in forensic medicine. For.Sci.Int. 113: 43-46.
- [4]. Rudin N., Inman K, 2002. An introduction to forensic dna analysis.2th ed. Crc Press Boca .p. 53-90.
- [5]. Özkoçak V., Akın G., Gültekin T. 2017. Somatoskopi ve Antropometri Tekniklerinin Adli Bilimler İçin Önemi. Hitit Üniversitesi Sosyal Bilimler Dergisi. (10): 703-714.
- [6]. Çeker D. 2017. İnsan Kemiklerinin Analizi ve Adli Antropoloji’de Kimliklendirmede Önemi Masrop E – Dergi. 11(17): 8-13.
- [7]. Andelinovic S., Sutlovic D., Ivkosic I.E., Skaro V., Ivkosic A., Paic F., et al., 2005. Twelve-year experience in identification of skeletal remains from mass graves. Croatian Medical Journal. 46: 530-539.
- [8]. Goodwin W., Linacre A., Hadi S., 2007. An introduction to Forensic Genetics. 1st ed.John Wiley & Sons Ltd Published England .p.51-61.
- [9]. Hummel S. 2003. Ancient DNA typing: Methods, strategies and applications’’, 1th ed. Springer Verlag Publisher. Berlin .p.57-80.
- [10]. Pääbo S. 1985. Molecular cloning of Ancient Egyptian mummy DNA. Nature 314(6012): 644-645.
- [11]. Singh J., Garg A. 2014. Ancient DNA analysis and ,its probable applications in Forensic Anthropology.J Punjab Acad Forensic Med Toxicol 14(1): 43-50.
- [12]. Stone A.C. 2008. DNA analysis of archaelogical remains. Chapter 15. Biological Anthropology of the Human Skeleton, Katzenberg M.A, Saunders S.R. p.461-482.
- [13]. Dib, C. 1996. A comprehensive genetic map of the human genom based on 5,264 Microsatellites. Nature (380):152-154.
- [14]. Kobilinsky L., Liotti T.F., Oeser-Sweat J. Forensic DNA analysis methods, DNA: forensic and legal applications, 1st ed. John Wiley & Sons, Inc Publication ;2005.p.70-73.
- [15]. James H.S., Nordby J.J., Bell S. 2014. Forensic Science: An intraduction to scientific and investigative techniques. 4th ed. Crc Press Florida. p.115-134.
- [16]. Gomolka M., Hundrieser J., Nürnberg P., Roewer L., Epplen J., T, Epplen C. 1994. Selected di- and tetranucleotide microsatellites from chromosomes 7, 12, 14, And Y in various Eurasian Populations. Hum. Genet. (93): 592–596.
- [17]. Schleif R. 1993. Genetics and molecular biology. 2th ed. The Johns Hopkins University Press Usa. p.698.
- [18]. International Human Genom Consortium. 2001 . Initial sequencing and analysis of human genom. Nature (409): 860–921.
- [19]. Butler J.M., Schoske R., Vallone P.M., Redman J.W., Kline M.C. 2003. Allele frequencies for 15 autosomal STR loci on U.S. Caucasian, African American, and Hispanic populations. Journal of Forensic Science .(48):908.
- [20]. Butler J.M. 2005. Forensic DNA typin .biology, technology, and genetics of STR Markers. 2 th ed. Elsevier Academic Press Burlington, MA, USA, p. 87-117.
- [21]. Szibor R. 2007. X-chromosomal markers: Past, present and future, Forensic Science International: Genetics (1):93–99.
- [22]. Szibor R., Krawzak M., Hering S., Edelmann J., Kuhlisch E., Krause D. 2003. Use of XLinked markers for Forensic purposes. International Journal of Legal Medicine (117): 67–74.
- [23]. Causin V. 2015. Polymers on the crime scene. Springer International Publishing. 105–166.
- [24]. Bramble S.K., Cantu A.A., Ramotowski R.S., Brennan J.S. 2000. Deep red to near infrared (NIR) fluorescence of gentian violet-treated latent prints. Journal Forensic Identif. 50 (1): 33–49.
- [25]. Choudhry M.Y., Whritenour R.D. 1990. A new approach to unraveling tangled adhesive tape for potential detection of latent prints and recovery of trace evidence. J. Forensic Sci. 35 (6): 1373–1383
- [26]. Fujimoto J.G., Pitris C., Boppart S.A. 2000. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2 (1–2): 9–25.
- [27]. Choi W.J., Min, G., Lee H.B. 2000. Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography. Journal of the Optical Society of Korea. 14 (4): 316-320.
- [28]. Zhang N., Wang C., Sun Z., Li Z., Xie L., Yan Y., et al. 2018. Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography. Forensic Science International 287: 81-87.
- [29]. Vennemann M., Scott G., Curran L., Bittner F., Tobe S.S,. 2014. Sensitivity and specificity of presumptive tests for blood, saliva and semen. Forensic Sci. Med. Pathol. 10: 69–75.
- [30]. Hanson E., Ballantyne J. 2013. Highly specific Mrna biomarkers for the identification of vaginal secretions in sexual assault investigation. Sci Justice 53. 14-22.
- [31]. Haas C., Hanson E.K., Morling N., Ballantyne J. 2011. Collaborative EDNAP exercises on messenger RNA/DNA co-analysis for body fluid identification (blood, saliva, semen) and STR profiling. Forensic Sci. Int.: Genet. Suppl. (3): 5-6.
- [32]. Blackman S., Allen B.S., Hanson E.K., Panasiuk M., Brooker A.L., Rendell P. 2018. Developmental validation of the ParaDNA body fluid ID system a rapid multiplex mRNA-profiling system for the forensic identification of body fluids. Forensic Science International: Genetics. 151-156.
- [33]. Sinelnikov, A., Reich, K. 2017.Materials and methods that allow fingerprint analysis and DNA profiling from the same latent evidence, Forensic Science International: Genetics Supplement Series 6, p. 40-42, Elsevier.
- [34]. Sewell, J., Quinones, I., Ames, C., Multoney, B., Curtis, S., Seeboruth, H., Moore, S., Daniel, B. 2008. Recovery of DNA and fingerprints from touched documents’’, Forensic Science International: Genetics 2, p. 281–285, Elsevier
- [35]. Feine, I., Shpitzen, M., Geller, B., Salmon, E., Peleg, T., Roth, J., Gafny, R. 2017. Acetone facilitated DNA sampling from electrical tapes improves DNA recovery and enables latent fingerprints development ‘’, Forensic Science International 276, p.107-110, Elsevier.
- [36]. Ostojic, L., Wurmbach, E. 02017. Analysis of fingerprint samples, testing various conditions, for forensic DNA identification’’, Science and Justice 57, p. 35-40, Elsevier