Year 2021, Volume 10 , Issue 2, Pages 403 - 414 2021-06-07

On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions on Semi Axis
On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions

Nida PALAMUT KOŞAR [1]


Makale, transfer koşullu tekil q-Sturm-Liouville problemi için bir spektral fonksiyonun varlığı ile ilgilidir. Ayrıca, özfonksiyonlarda genişleme formülü ve Parseval eşitliği oluşturulmuştur.
q-Sturm-Liouville operatörü, , Parseval eşitliği, , spektral fonksiyon, , özfonksiyon genişlemesi
  • Ernst T. 2000. The History of q-calculus and a New Method. Department of Mathematics, Uppsala University, ISSN 1101-3591, 1-230.
  • Kac V., Cheung P. 2002. Quantum Calculus. Springer-Verlag, Berlin, 1-118.
  • Allahverdiev B.P., Tuna H. 2018. An expansion theorem for q-Sturm-Liouville operators on the whole line. Turkish Journal of Mathematics, 42 (3): 1060-1071.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion in the singular case for q-Sturm-Liouville operators. Caspian Journal of Mathematical Sciences, 8 (2): 91-102.
  • Allahverdiev B.P., Tuna H. 2019. Eigenfunction expansion for singular Sturm-Liouville problems with transmission conditions. Electron J. Differential Equations, 03: 1-10.
  • Annaby M.H., Mansour Z.S. 2012. q-Fractional Calculus and Equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg, 1-318.
  • Annaby M.H., Mansour Z.S. 2005. Basic Sturm-Liouville problems. J. Phys. A.: Math. Gen., 38 (17): 3775-3797.
  • Jackson F.H. 1910. q-difference equations. Am. J. Math., 32 (4): 305-314.
  • Jackson F.H. 1910. On q-definite Integrals. Pure Appl. Math.,41 (15): 193-203.
  • Levitan B.M., Sagsjan I.S. 1991. Sturm-Liouville and Dirac Operators. Mathematics and its Applications, Kluwer Academic Publishers, London, 1-339.
  • Titchmarsh E.C. 1962. Eigenfunction Expansions Associated with Second-Order Differential Equations, Part I. Second Edition Clarendon Press, Oxford, 1-210.
  • Annaby M.H., Mansour Z.S. 2011. Asymptotic formulae for eigenvalues and eigenfunctions of q-Sturm-Liouville problems. Math. Nachr., 284 (4): 443-470.
  • Annaby M.H., Mansour Z.S., Soliman I.A. 2012. q-Titchmarsh-Weyl theory: series expansion. Nagoya Math. J., 205: 67-118.
  • Karahan D., Mamedov Kh.R. 2020. Sampling Theory Associated with q-Sturm-Liouville Operator with Discontinuity Conditions. Journal of Contemporary Applied Mathematics, 10 (2): 40-48.
  • Mukhtarov O.Sh., Tunç E. 2004. Eigenvalue problems for Sturm Liouville equations with transmission conditions. Israel J. Math., 144: 367-380.
  • Mukhtarov O.Sh., Yakubov S. 2002. Problems for differential equations with transmission conditions. Applicable Anal., 81: 1033-1064.
  • Goktas S., Koyunbakan H., Gulsen T. 2018. Inverse nodal problem for polynomial pencil of Sturm‐Liouville operator. Mathematical Methods in the Applied Sciences, 41 (17): 7576-7582.
  • Bairamov E., Aygar Y., Oznur B. 2020. Scattering Properties of Eigenparameter Dependent Impulsive Sturm-Liouville Equations. Bulletin of the Malaysian Mathematical Sciences Society, 43: 2769-2781.
  • Hahn W. 1949. Beitrage zur Theorie der Heineschen Reiben. Math. Nachr, 2: 340-379 (in German).
  • Annaby M.H. 2013. q-Type Sampling Theorems. Results in Mathematics, 44: 214-225.
  • Dehghani I., Akbarfam A.J. 2014. Resolvent operator and self-adjointness of Sturm-Liouville operators with a finite number of transmission conditions. Mediterr. J. Math., 11: 447-462.
  • Wang A., Sun J., Hao X., Yao S. 2009. Completeness of eigenfunctions of Sturm-Liouville problems with transmission conditions. Math. Appl. Anal., 16: 299-312.
  • Kolmogorov A.N., Fomin S.V. 1975. Introductory Real Analysis. Dover Publications, New York, 1-416.
Primary Language en
Subjects Science
Journal Section Araştırma Makalesi
Authors

Orcid: 0000-0003-2421-7872
Author: Nida PALAMUT KOŞAR (Primary Author)
Institution: GAZİANTEP ÜNİVERSİTESİ, NİZİP EĞİTİM FAKÜLTESİ
Country: Turkey


Dates

Publication Date : June 7, 2021

Bibtex @research article { bitlisfen875445, journal = {Bitlis Eren Üniversitesi Fen Bilimleri Dergisi}, issn = {2147-3129}, eissn = {2147-3188}, address = {}, publisher = {Bitlis Eren University}, year = {2021}, volume = {10}, pages = {403 - 414}, doi = {}, title = {On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions}, key = {cite}, author = {Palamut Koşar, Nida} }
APA Palamut Koşar, N . (2021). On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions . Bitlis Eren Üniversitesi Fen Bilimleri Dergisi , 10 (2) , 403-414 . Retrieved from https://dergipark.org.tr/en/pub/bitlisfen/issue/62708/875445
MLA Palamut Koşar, N . "On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions" . Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 10 (2021 ): 403-414 <https://dergipark.org.tr/en/pub/bitlisfen/issue/62708/875445>
Chicago Palamut Koşar, N . "On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 10 (2021 ): 403-414
RIS TY - JOUR T1 - On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions AU - Nida Palamut Koşar Y1 - 2021 PY - 2021 N1 - DO - T2 - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 403 EP - 414 VL - 10 IS - 2 SN - 2147-3129-2147-3188 M3 - UR - Y2 - 2021 ER -
EndNote %0 Bitlis Eren Üniversitesi Fen Bilimleri Dergisi On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions %A Nida Palamut Koşar %T On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions %D 2021 %J Bitlis Eren Üniversitesi Fen Bilimleri Dergisi %P 2147-3129-2147-3188 %V 10 %N 2 %R %U
ISNAD Palamut Koşar, Nida . "On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 10 / 2 (June 2021): 403-414 .
AMA Palamut Koşar N . On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021; 10(2): 403-414.
Vancouver Palamut Koşar N . On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021; 10(2): 403-414.
IEEE N. Palamut Koşar , "On Parseval Identity of q-Sturm-Liouville Problem with Transmission Conditions", Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 403-414, Jun. 2021