Research Article
BibTex RIS Cite

TiO2 katkılı Al2O3 nanopartikülleri ile katalize edilen talaş pirolizinden hidrojen üretimi

Year 2022, Volume: 11 Issue: 1, 99 - 105, 24.03.2022
https://doi.org/10.17798/bitlisfen.997799

Abstract

Yapılan çalışmada, TiO2 katkılı Al2O3 nanopartikülleri ile katalizlenen talaş pirolizinin hidrojen üretimi reaksiyonu 600, 700 ve 800 ℃ sıcaklıkta incelenmiştir. Kullanılan katalizör, talaşın katalitik pirolizinden hidrojence zengin sentez gazı üretimi için, ıslak emdirme yöntemiyle sentezlenmiştir. TiO2 katkılı Al2O3 nanopartiküllerinin karakterizasyonu, X ışını kırınımı (XRD) ve Taramalı Elektron Mikroskobu (SEM) kullanılarak gerçekleştirilmiş, üretilen hidrojence zengin gaz ürünü gaz kromatografisi (GC) ile analiz edilmiştir. Kullanılan TiO2 katkılı Al2O3 katalizörü ile talaşın 800 °C’deki pirolizinde en yüksek H2 verimi 17.04 mol/kg biyokütle ve en yüksek sentez gazı verimi 0.72 Nm3/kg biyokütle olarak gözlenmiştir. Ayrıca sentezlenen katalizör ile yapılan talaş pirolizinde karbon dönüşüm oranı %53,6 olarak tespit edilmiştir. Katalitik olmayan talaş pirolizi deneyine kıyasla, TiO2 katkılı Al2O3 nanopartikül ilavesinin talaş pirolizinden hidrojen üretimini yaklaşık %50 arttırdığı gözlenmiştir.

References

  • Kaskun, S., Akinay, Y., Kayfeci, M. 2020. Improved hydrogen adsorption of ZnO doped multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 45(60), 34949-34955.
  • Turner, J. A. 2004. Sustainable hydrogen production. Science, 305(5686), 972-974.
  • Zhang, Z. X., Li, K., Ma, S. W., Cui, M. S., Lu, Q., Yang, Y. P. 2019. Fast pyrolysis of biomass catalyzed by magnetic solid base catalyst in a hydrogen atmosphere for selective production of phenol. Industrial Crops and Products, 137, 495-500.
  • Besson, M., Gallezot, P., Pinel, C. 2014. Conversion of biomass into chemicals over metal catalysts. Chemical reviews, 114(3), 1827-1870.
  • Fahmy, T. Y., Fahmy, Y., Mobarak, F., El-Sakhawy, M., & Abou-Zeid, R. E. 2020. Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, 22(1), 17.
  • Wang, G., Dai, Y., Yang, H., Xiong, Q., Wang, K., Zhou, J., Li Y., Wang, S. 2020. A review of recent advances in biomass pyrolysis. Energy & Fuels, 34(12), 15557-15578.
  • Saxena, R. C., Seal, D., Kumar, S., Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • El-Rub, Z. A., Bramer, E. A., Brem, G. 2008. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87(10-11), 2243-2252.
  • Tanksale, A., Beltramini, J. N., Lu, G. M. 2010. A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 14(1), 166-182.
  • Salam, M. A., Ahmed, K., Akter, N., Hossain, T., Abdullah, B. 2018. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International journal of hydrogen energy, 43(32), 14944-14973
  • Ji, G., Xu, X., Yang, H., Zhao, X., He, X., and Zhao, M. 2017. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 materials. Environmental science & technology, 51(19), 11484-11492.
  • Liu, P., Liu, L., Zhou, Z., Li, Y., Yuan, H., and Lei, T. 2021. Co-pyrolysis of pine sawdust with aluminum dross for immobilization of heavy metal and enhancing hydrogen generation. Fuel, 305, 121597.
  • Yang, S., Zhang, X., Chen, L., Sun, L., Zhao, B., Si, H., and Meng, F. 2019. Pyrolysis of sawdust with various Fe-based catalysts: Influence of support characteristics on hydrogen-rich gas production. Journal of Analytical and Applied Pyrolysis, 137, 29-36.
  • Zhao, M., Memon, M. Z., Ji, G., Yang, X., Vuppaladadiyam, A. K., Song, Y., and Zhou, H. 2020. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 148, 168-175.
  • Nath, K., Das, D. 2003. Hydrogen from biomass. Current science, 265-271.
  • Ni, M., Leung, D. Y., Leung, M. K., Sumathy, K. 2006. An overview of hydrogen production from biomass. Fuel processing technology, 87(5), 461-472.
  • Kalinci, Y., Hepbasli, A., Dincer, I. 2009. Biomass-based hydrogen production: a review and analysis. International journal of hydrogen energy, 34(21), 8799-8817.
  • Zhaobin, W., Qin, X., Xiexian, G., Sham, E. L., Grange, P., Delmon, B. 1990. Titania-modified hydrodesulphurization catalysts: I. Effect of preparation techniques on morphology and properties of TiO2-Al2O3 carrier. Applied catalysis, 63(1), 305-317.
  • Wang, S., Guo, X., Wang, K., Luo, Z. 2011. Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis, 91(1), 183-189.
  • Lippens, B. C., De Boer, J. H. 1964. Study of phase transformations during calcination of aluminium hydroxides by selected area electron diffraction. Acta Crystallographica, 17(10), 1312-1321.
  • Abazari, R., Mahjoub, A. R., Sanati, S. 2014. A facile and efficient preparation of anatase titania nanoparticles in micelle nanoreactors: morphology, structure, and their high photocatalytic activity under UV light illumination. Rsc Advances, 4(99), 56406-56414.
  • Horisawa, S., Sunagawa, M., Tamai, Y., Matsuoka, Y., Miura, T., Terazawa, M. 1999. Biodegradation of nonlignocellulosic substances II: physical and chemical properties of sawdust before and after use as artificial soil. Journal of wood science, 45(6), 492-497.
  • Demirbaş, A. 2002. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy conversion and management, 43(7), 897-909.
  • Li, S., Zheng, H., Zheng, Y., Tian, J., Jing, T., Chang, J. S., Ho, S. H. 2019. Recent advances in hydrogen production by thermo-catalytic conversion of biomass. International Journal of Hydrogen Energy, 44(28), 14266-14278.
  • Zhang, J., Toghiani, H., Mohan, D., Pittman, C. U., Toghiani, R. K. 2007. Product analysis and thermodynamic simulations from the pyrolysis of several biomass feedstocks. Energy & fuels, 21(4), 2373-2385.

Hydrogen Production from Sawdust Pyrolysis Catalysed by TiO2 Impregnated Al2O3 Nanoparticles

Year 2022, Volume: 11 Issue: 1, 99 - 105, 24.03.2022
https://doi.org/10.17798/bitlisfen.997799

Abstract

In the present study, the hydrogen production of wood sawdust pyrolysis catalysed by TiO2 impregnated Al2O3 (TiO2/Al2O3) was investigated under temperatures of 600, 700 and 800 ℃. The catalyst preparation was made by wet impregnation method for enhanced hydrogen-rich gas production from catalytic pyrolysis of sawdust. Characterization and morphology of TiO2 doped Al2O3 nanoparticles were performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and the gas product was analysed by gas chromatography. The presented TiO2 doped Al2O3 catalyst showed the highest H2 yield in sawdust pyrolysis as 17.04 mol/kg, and gas productivity 0.72 Nm3/kg biomass at temperatures of 800 °C. Furthermore, the carbon conversion rate of the sawdust pyrolysis was detected as 53.6% with the TiO2 doped Al2O3 catalyst. It was observed that TiO2 doped Al2O3 nanoparticles supplementation approximately 50% increased the hydrogen production of sawdust pyrolysis, compared to non-catalytic experiment of sawdust pyrolysis.

References

  • Kaskun, S., Akinay, Y., Kayfeci, M. 2020. Improved hydrogen adsorption of ZnO doped multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 45(60), 34949-34955.
  • Turner, J. A. 2004. Sustainable hydrogen production. Science, 305(5686), 972-974.
  • Zhang, Z. X., Li, K., Ma, S. W., Cui, M. S., Lu, Q., Yang, Y. P. 2019. Fast pyrolysis of biomass catalyzed by magnetic solid base catalyst in a hydrogen atmosphere for selective production of phenol. Industrial Crops and Products, 137, 495-500.
  • Besson, M., Gallezot, P., Pinel, C. 2014. Conversion of biomass into chemicals over metal catalysts. Chemical reviews, 114(3), 1827-1870.
  • Fahmy, T. Y., Fahmy, Y., Mobarak, F., El-Sakhawy, M., & Abou-Zeid, R. E. 2020. Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability, 22(1), 17.
  • Wang, G., Dai, Y., Yang, H., Xiong, Q., Wang, K., Zhou, J., Li Y., Wang, S. 2020. A review of recent advances in biomass pyrolysis. Energy & Fuels, 34(12), 15557-15578.
  • Saxena, R. C., Seal, D., Kumar, S., Goyal, H. B. 2008. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renewable and Sustainable Energy Reviews, 12(7), 1909-1927.
  • El-Rub, Z. A., Bramer, E. A., Brem, G. 2008. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87(10-11), 2243-2252.
  • Tanksale, A., Beltramini, J. N., Lu, G. M. 2010. A review of catalytic hydrogen production processes from biomass. Renewable and Sustainable Energy Reviews, 14(1), 166-182.
  • Salam, M. A., Ahmed, K., Akter, N., Hossain, T., Abdullah, B. 2018. A review of hydrogen production via biomass gasification and its prospect in Bangladesh. International journal of hydrogen energy, 43(32), 14944-14973
  • Ji, G., Xu, X., Yang, H., Zhao, X., He, X., and Zhao, M. 2017. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 materials. Environmental science & technology, 51(19), 11484-11492.
  • Liu, P., Liu, L., Zhou, Z., Li, Y., Yuan, H., and Lei, T. 2021. Co-pyrolysis of pine sawdust with aluminum dross for immobilization of heavy metal and enhancing hydrogen generation. Fuel, 305, 121597.
  • Yang, S., Zhang, X., Chen, L., Sun, L., Zhao, B., Si, H., and Meng, F. 2019. Pyrolysis of sawdust with various Fe-based catalysts: Influence of support characteristics on hydrogen-rich gas production. Journal of Analytical and Applied Pyrolysis, 137, 29-36.
  • Zhao, M., Memon, M. Z., Ji, G., Yang, X., Vuppaladadiyam, A. K., Song, Y., and Zhou, H. 2020. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy, 148, 168-175.
  • Nath, K., Das, D. 2003. Hydrogen from biomass. Current science, 265-271.
  • Ni, M., Leung, D. Y., Leung, M. K., Sumathy, K. 2006. An overview of hydrogen production from biomass. Fuel processing technology, 87(5), 461-472.
  • Kalinci, Y., Hepbasli, A., Dincer, I. 2009. Biomass-based hydrogen production: a review and analysis. International journal of hydrogen energy, 34(21), 8799-8817.
  • Zhaobin, W., Qin, X., Xiexian, G., Sham, E. L., Grange, P., Delmon, B. 1990. Titania-modified hydrodesulphurization catalysts: I. Effect of preparation techniques on morphology and properties of TiO2-Al2O3 carrier. Applied catalysis, 63(1), 305-317.
  • Wang, S., Guo, X., Wang, K., Luo, Z. 2011. Influence of the interaction of components on the pyrolysis behavior of biomass. Journal of Analytical and Applied Pyrolysis, 91(1), 183-189.
  • Lippens, B. C., De Boer, J. H. 1964. Study of phase transformations during calcination of aluminium hydroxides by selected area electron diffraction. Acta Crystallographica, 17(10), 1312-1321.
  • Abazari, R., Mahjoub, A. R., Sanati, S. 2014. A facile and efficient preparation of anatase titania nanoparticles in micelle nanoreactors: morphology, structure, and their high photocatalytic activity under UV light illumination. Rsc Advances, 4(99), 56406-56414.
  • Horisawa, S., Sunagawa, M., Tamai, Y., Matsuoka, Y., Miura, T., Terazawa, M. 1999. Biodegradation of nonlignocellulosic substances II: physical and chemical properties of sawdust before and after use as artificial soil. Journal of wood science, 45(6), 492-497.
  • Demirbaş, A. 2002. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy conversion and management, 43(7), 897-909.
  • Li, S., Zheng, H., Zheng, Y., Tian, J., Jing, T., Chang, J. S., Ho, S. H. 2019. Recent advances in hydrogen production by thermo-catalytic conversion of biomass. International Journal of Hydrogen Energy, 44(28), 14266-14278.
  • Zhang, J., Toghiani, H., Mohan, D., Pittman, C. U., Toghiani, R. K. 2007. Product analysis and thermodynamic simulations from the pyrolysis of several biomass feedstocks. Energy & fuels, 21(4), 2373-2385.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Songül Kaskun 0000-0002-2760-2218

Publication Date March 24, 2022
Submission Date September 20, 2021
Acceptance Date December 29, 2021
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

IEEE S. Kaskun, “Hydrogen Production from Sawdust Pyrolysis Catalysed by TiO2 Impregnated Al2O3 Nanoparticles”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 1, pp. 99–105, 2022, doi: 10.17798/bitlisfen.997799.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS