Research Article
BibTex RIS Cite

On the Construction of The Laplace Transform via Gamma Function

Year 2024, Volume: 13 Issue: 4, 1247 - 1259, 31.12.2024
https://doi.org/10.17798/bitlisfen.1545337

Abstract

The Laplace transform can be applied to integrable and exponential-type functions on the half-line [0,├ ∞)┤by the formula L{f}=∫_0^∞▒〖f(x) e^(-sx) dx〗. This transform reduces differential equations to algebraic equations and solves many non-homogeneous differential equations. However, the Laplace transform cannot be applied to some functions such as x^(- 9/4), because the given integral is divergent. So, the Laplace transform do not solve some differential equations with some terms such as x^(- 9/4). This transform needs a revision to include such functions to solve a wider class of differential equations. In this study, we defined the Ω-Laplace transform, which eliminates such insufficiency of the Laplace transform and is a generalization of it. We applied this new operator to previously unsolved differential equations and obtained solutions. Ω-Laplace ensform given with the help of series:
f(x)=∑_(n=0)^∞▒〖c_n x^(r_n ) 〗⇒Ω{f}=∑_(n=0)^∞▒(c_n Γ(r_n+1))/s^(r_n+1)
Moreover, we give the similar and different properties of this transform to the Laplace transform.

Ethical Statement

The study is complied with research and publication ethics.

References

  • [1] E. T. Jaynes, Probability Theory: The Logic of Science, vol. 727, Cambridge, UK: Cambridge University Press, 2003.
  • [2] L. Euler, “De constructione aequationum” [The Construction of Equations], Opera Omnia, 1st series (in Latin), vol. 22, pp. 150–161, 1744.
  • [3] J. L. Lagrange, “Mémoire sur l'utilité de la méthode,” Œuvres de Lagrange, vol. 2, pp. 171–234, 1773.
  • [4] I. Grattan-Guinness, “Laplace’s integral solutions to partial differential equations,” in Pierre Simon Laplace 1749-1827: A Life in Exact Science, C. C. Gillispie, Ed., Princeton, USA: Princeton University Press, 1997.
  • [5] L. Debnath and D. Bhatta, Integral Transforms and Their Application, Boca Raton, USA: CRC Press, 2014.
  • [6] M. Çağlayan, N. Çelik, and S. Doğan, Adi Diferansiyel Denklemler, 5th ed., Bursa, Türkiye: Dora Yayıncılık, 2013.
  • [7] A. Mısır, Teori Teknik ve Uygulamalı Diferensiyel Denklemler, Ankara, Türkiye: Gazi Kitabevi, 2016.
  • [8] R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed., Boston, USA: McGraw-Hill, 2000.
  • [9] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, 2nd ed., New York, USA: Wiley, 1971.
  • [10] G. A. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., Boston, USA: McGraw-Hill, 1967.
  • [11] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton, USA: Princeton University Press, 1941.
  • [12] J. William, Laplace Transforms, Problem Solvers, UK: George Allen & Unwin, 1973.
  • [13] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, New York, USA: Springer-Verlag, 2003.
  • [14] J. Mikusinski, Operational Calculus, 2nd ed., Oxford, UK: Pergamon Press, 1983.
  • [15] M. A. Chaudhry and A. Qadir, “Fourier transform and distributional representation of Gamma function leading to some new identities,” International Journal of Mathematics and Mathematical Sciences, vol. 39, pp. 2091–2096, 2004.
  • [16] A. Tassaddig, R. Safdar, and T. A. Kanwal, “Distributional representation of gamma function with generalized complex domain,” Advances in Pure Mathematics, vol. 7, pp. 441–449, 2017.
  • [17] H. Alzer and K. C. Richards, “Series representations for special functions and mathematical constants,” The Ramanujan Journal, vol. 40, pp. 291–310, Mar. 2015.
  • [18] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Physical Review, vol. 28, no. 6, pp. 1049–1070, 1926.
  • [19] N. Chittora and D. Babel, “A brief study on Fourier transform and its applications,” International Research Journal of Engineering and Technology (IRJET), vol. 5, no. 12, pp. 1127–1130, 2018.
  • [20] P. Singh, A. Gupta, and S. D. Joshi, “General parameterized Fourier transform: A unified framework for the Fourier, Laplace, Mellin, and Z Transforms,” IEEE Transactions on Signal Processing, vol. 70, pp. 1295–1309, 2022.
  • [21] E. Ata and I. O. Kıymaz, “New generalized Mellin transform and applications to partial and fractional differential equations,” International Journal of Mathematics and Computer in Engineering, vol. 1, no. 1, pp. 45–66, 2023.
  • [22] S. Al-Omari, “Estimates and properties of certain q-Mellin transform on generalized q-calculus theory,” Advances in Difference Equations, vol. 2021, no. 1, p. 233, 2021.
  • [23] M. Vivas-Cortez, J. N. Valdés, J. E. H. Hernández, J. V. Velasco, and O. Larreal, “On non-conformable fractional Laplace transform,” Applied Mathematics and Information Sciences, vol. 15, no. 4, pp. 403–409, 2021.
  • [24] N. A. Khan, O. A. Razzaq, and M. Ayaz, “Some properties and applications of conformable fractional Laplace transform (CFLT),” Journal of Fractional Calculus and Application, vol. 9, no. 1, pp. 72–81, 2018.
  • [25] B. Musayev, M. Alp, N. Mustafayev, and İ. Ekincioğlu, Analiz I, Ankara, Türkiye: Tekağaç Eylül Yayıncılık, 2003.
Year 2024, Volume: 13 Issue: 4, 1247 - 1259, 31.12.2024
https://doi.org/10.17798/bitlisfen.1545337

Abstract

References

  • [1] E. T. Jaynes, Probability Theory: The Logic of Science, vol. 727, Cambridge, UK: Cambridge University Press, 2003.
  • [2] L. Euler, “De constructione aequationum” [The Construction of Equations], Opera Omnia, 1st series (in Latin), vol. 22, pp. 150–161, 1744.
  • [3] J. L. Lagrange, “Mémoire sur l'utilité de la méthode,” Œuvres de Lagrange, vol. 2, pp. 171–234, 1773.
  • [4] I. Grattan-Guinness, “Laplace’s integral solutions to partial differential equations,” in Pierre Simon Laplace 1749-1827: A Life in Exact Science, C. C. Gillispie, Ed., Princeton, USA: Princeton University Press, 1997.
  • [5] L. Debnath and D. Bhatta, Integral Transforms and Their Application, Boca Raton, USA: CRC Press, 2014.
  • [6] M. Çağlayan, N. Çelik, and S. Doğan, Adi Diferansiyel Denklemler, 5th ed., Bursa, Türkiye: Dora Yayıncılık, 2013.
  • [7] A. Mısır, Teori Teknik ve Uygulamalı Diferensiyel Denklemler, Ankara, Türkiye: Gazi Kitabevi, 2016.
  • [8] R. N. Bracewell, The Fourier Transform and its Applications, 3rd ed., Boston, USA: McGraw-Hill, 2000.
  • [9] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, 2nd ed., New York, USA: Wiley, 1971.
  • [10] G. A. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed., Boston, USA: McGraw-Hill, 1967.
  • [11] D. V. Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton, USA: Princeton University Press, 1941.
  • [12] J. William, Laplace Transforms, Problem Solvers, UK: George Allen & Unwin, 1973.
  • [13] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, New York, USA: Springer-Verlag, 2003.
  • [14] J. Mikusinski, Operational Calculus, 2nd ed., Oxford, UK: Pergamon Press, 1983.
  • [15] M. A. Chaudhry and A. Qadir, “Fourier transform and distributional representation of Gamma function leading to some new identities,” International Journal of Mathematics and Mathematical Sciences, vol. 39, pp. 2091–2096, 2004.
  • [16] A. Tassaddig, R. Safdar, and T. A. Kanwal, “Distributional representation of gamma function with generalized complex domain,” Advances in Pure Mathematics, vol. 7, pp. 441–449, 2017.
  • [17] H. Alzer and K. C. Richards, “Series representations for special functions and mathematical constants,” The Ramanujan Journal, vol. 40, pp. 291–310, Mar. 2015.
  • [18] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Physical Review, vol. 28, no. 6, pp. 1049–1070, 1926.
  • [19] N. Chittora and D. Babel, “A brief study on Fourier transform and its applications,” International Research Journal of Engineering and Technology (IRJET), vol. 5, no. 12, pp. 1127–1130, 2018.
  • [20] P. Singh, A. Gupta, and S. D. Joshi, “General parameterized Fourier transform: A unified framework for the Fourier, Laplace, Mellin, and Z Transforms,” IEEE Transactions on Signal Processing, vol. 70, pp. 1295–1309, 2022.
  • [21] E. Ata and I. O. Kıymaz, “New generalized Mellin transform and applications to partial and fractional differential equations,” International Journal of Mathematics and Computer in Engineering, vol. 1, no. 1, pp. 45–66, 2023.
  • [22] S. Al-Omari, “Estimates and properties of certain q-Mellin transform on generalized q-calculus theory,” Advances in Difference Equations, vol. 2021, no. 1, p. 233, 2021.
  • [23] M. Vivas-Cortez, J. N. Valdés, J. E. H. Hernández, J. V. Velasco, and O. Larreal, “On non-conformable fractional Laplace transform,” Applied Mathematics and Information Sciences, vol. 15, no. 4, pp. 403–409, 2021.
  • [24] N. A. Khan, O. A. Razzaq, and M. Ayaz, “Some properties and applications of conformable fractional Laplace transform (CFLT),” Journal of Fractional Calculus and Application, vol. 9, no. 1, pp. 72–81, 2018.
  • [25] B. Musayev, M. Alp, N. Mustafayev, and İ. Ekincioğlu, Analiz I, Ankara, Türkiye: Tekağaç Eylül Yayıncılık, 2003.
There are 25 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Araştırma Makalesi
Authors

Ufuk Kaya 0000-0003-1278-997X

Şeyda Ermiş This is me 0009-0007-1187-0588

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date September 8, 2024
Acceptance Date November 23, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

IEEE U. Kaya and Ş. Ermiş, “On the Construction of The Laplace Transform via Gamma Function”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 13, no. 4, pp. 1247–1259, 2024, doi: 10.17798/bitlisfen.1545337.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS