Research Article
BibTex RIS Cite

Deep Learning Models For Symbol Detection in UFMC Systems

Year 2024, Volume: 6 Issue: 2, 222 - 229, 29.10.2024
https://doi.org/10.46387/bjesr.1528035

Abstract

The limited availability of the frequency band in wireless communication systems is one of the major obstacles to achieving high-speed data transmission. To overcome this obstacle, multicarrier systems, which utilize the available frequency bandwidth most efficiently to ensure spectral efficiency and consequently high data rate transmission, are used. In the Universal Filtered Multi-Carrier (UFMC) technique, which is one of the multi-carrier systems, in addition to high-speed data transmission, the bandwidth is divided into many sub-bands and only the lower sidebands are filtered, and as a result, the inter-channel interference problem is minimized. However, in UFMC systems, the error-free reception of symbols at the receiver is directly dependent on the performance of the symbol detection algorithm. In this study, symbol detection was performed in UFMC systems by taking advantage of the learning ability of deep learning methods, providing flexible solutions in solving nonlinear problems, reducing the hardware load by using fewer parameters and the ability to perform parallel processing, and thus the symbol detection performance of the system under bad channel conditions was increased.

References

  • A.A. Laghari, K. Wu, R.A. Laghari et al., “Retracted Article: A Review and State of Art of Internet of Things (IoT),” Arch Computat Methods Eng vol. 29, pp. 1395–1413 2022.
  • L.J. Cimini Jr., “Analysis and simulation of digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, 1985.
  • V. Vakilian, T. Wild, F. Schaich, S.T. Brink, and J. F. Frigon, “Universal-filtered multi-carrier technique for wireless systems beyond LTE,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, pp. 223–228, Dec. 2013.
  • P.N. Rani and C.S. Rani, “UFMC: The 5G modulation technique,” in 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 2016, pp. 1-3.
  • G. Bochechka, V. Tikhvinskiy, I. Vorozhishchev, A. Aitmagambetov, and B. Nurgozhin, “Comparative analysis of UFMC technology in 5G networks,” in 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 2017, pp. 1-6.
  • M.N. Seyman, “Convolutional fuzzy neural network based symbol detection in MIMO NOMA systems,” Journal of Electrical Engineering, vol. 74, no. 1, pp. 60-64, 2023.
  • M.N. Seyman and N. Taşpınar, “Channel estimation based on neural network in space time block coded MIMO–OFDM system,” Digital Signal Processing, vol. 23, no. 1, pp. 275-280, 2013.
  • N. Farsad, N. Shlezinger, A.J. Goldsmith, and Y.C. Eldar, "Data-driven symbol detection via model-based machine learning," in 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021, pp. 571-575.
  • M.N. Seyman, “Symbol detection based on backtracking search algorithm in MIMO-NOMA systems,” Computer Systems Science & Engineering, vol. 40, no. 2, pp. 795-804, 2022.
  • R. Jiang, Z. Fei, S. Cao, C. Xue, M. Zeng, and Q. Tang, “Deep learning-aided signal detection for two-stage index modulated universal filtered multi-carrier systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 1, 2022.
  • C. Lin and Q. Chang, “A deep learning approach for MIMO-NOMA downlink signal detection,” Sensors, no. 19, pp. 1-22, 2019.
  • N. Thompson and J. Thompson, “Deep learning for signal detection in non-orthogonal multiple access wireless systems,” in 2019 UK/China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-4.
  • H. Ye, G. Y. Li, and B. H. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Communication Letters, vol. 7, no. 1, pp. 114-1147, 2018.
  • J.-M. Kang, C.-J. Chun, and I.-M. J. I. A. Kim, “Deep learning based channel estimation for MIMO systems with received SNR feedback,” IEEE Access, vol. 8, pp. 121162-121181, 2020.
  • M. H. Essai Ali, “Deep learning-based pilot-assisted channel state estimator for OFDM systems,” IET Communications, vol. 15, no. 2, pp. 257-264, Jan. 2021.
  • N. Thompson and J. Thompson, “Deep learning for signal detection in non-orthogonal multiple access wireless systems,” in 2019 UK/China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-4.
  • C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel assignment for NOMA with deep reinforcement learning,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2200-2210, 2019.
  • X. Wang, T. Wild, F. Schaich, and S. ten Brink, "Pilot-aided channel estimation for universal filtered multi-carrier," in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 2015, pp. 1-5.
  • Y. Xu, H. Chu, and X. Wang, "Joint timing offset and channel estimation for multi-user UFMC uplink," IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 236-239, Feb. 2020.
  • L. Zhang, C. He, J. Mao, A. Ijaz, and P. Xiao, "Channel estimation and optimal pilot signals for universal filtered multi-carrier (UFMC) systems," in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 2017, pp. 1-6.
  • Md. F. Ahammed, A.A. Molla, R. Kadir, M.I. Kadir, “Deep bidirectional LSTM for the signal detection of universal filtered multicarrier systems”, Machine Learning with Applications, vol. 10, 2022.
  • Y. Luan and S. Lin, "Research on Text Classification Based on CNN and LSTM," 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, pp. 352-355, 2019.
  • J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B.Shuai, T. Liu, X. Wang, G. Wang, J. Cai, T. Chen, “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp.354-377, 2018.
  • F. Stoican, Y. He, Y. Liu et al., “Application of CNN-LSTM in Gradual Changing Fault Diagnosis of Rod Pumping System”, Hindawi, Mathematical Problems in Engineering, p. 9, 2019.
  • P. Görgel ve E. Kavlak, "Uzun Kısa Süreli Hafıza ve Evrişimsel Sinir Ağları ile Rüzgar Enerjisi Üretim Tahmini", Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 11, no. 1, pp. 69-80, Mar. 2020.
  • M.M. Eid et al., “Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases,” Mathematics, vol. 10, no. 20, p. 3845, Oct. 2022, doi: 10.3390/math10203845. [Online].

UFMC Sistemlerinde Sembol Tespiti İçin Derin Öğrenme Modelleri

Year 2024, Volume: 6 Issue: 2, 222 - 229, 29.10.2024
https://doi.org/10.46387/bjesr.1528035

Abstract

Kablosuz haberleşme sistemlerinde frekans bandının sınırlı kullanılabilirliği, yüksek hızlı veri iletiminin önündeki en büyük engellerden biridir. Bu engeli aşmak için, spektral verimliliği ve dolayısıyla yüksek veri hızı iletimini sağlamak için mevcut frekans bant genişliğini en verimli şekilde kullanan çoklu taşıyıcı sistemler kullanılmaktadır. Çoklu taşıyıcı sistemlerden biri olan Evrensel Filtreli Çoklu Taşıyıcı (UFMC) tekniğinde, yüksek hızlı veri iletiminin yanı sıra, bant genişliği birçok alt banda bölünerek yalnızca alt yan bantlar filtrelenmekte ve bunun sonucunda kanallar arası girişim sorunu en aza indirilmektedir. Ancak UFMC sistemlerde, alıcıda sembollerin hatasız alınması doğrudan sembol tespit algoritmasının performansına bağlıdır. Bu çalışmada, derin öğrenme yöntemlerinin öğrenme yeteneğinden yararlanılarak, doğrusal olmayan problemlerin çözümünde esnek çözümler sunulması, daha az parametre kullanılarak donanım yükünün azaltılması ve paralel işlem yapılabilmesi sayesinde UFMC sistemlerde sembol tespiti gerçekleştirilmiş ve böylece sistemin kötü kanal koşulları altında sembol tespit performansı artırılmıştır.

References

  • A.A. Laghari, K. Wu, R.A. Laghari et al., “Retracted Article: A Review and State of Art of Internet of Things (IoT),” Arch Computat Methods Eng vol. 29, pp. 1395–1413 2022.
  • L.J. Cimini Jr., “Analysis and simulation of digital mobile channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, 1985.
  • V. Vakilian, T. Wild, F. Schaich, S.T. Brink, and J. F. Frigon, “Universal-filtered multi-carrier technique for wireless systems beyond LTE,” in Proc. IEEE Globecom Workshops, Atlanta, GA, USA, pp. 223–228, Dec. 2013.
  • P.N. Rani and C.S. Rani, “UFMC: The 5G modulation technique,” in 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, 2016, pp. 1-3.
  • G. Bochechka, V. Tikhvinskiy, I. Vorozhishchev, A. Aitmagambetov, and B. Nurgozhin, “Comparative analysis of UFMC technology in 5G networks,” in 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, 2017, pp. 1-6.
  • M.N. Seyman, “Convolutional fuzzy neural network based symbol detection in MIMO NOMA systems,” Journal of Electrical Engineering, vol. 74, no. 1, pp. 60-64, 2023.
  • M.N. Seyman and N. Taşpınar, “Channel estimation based on neural network in space time block coded MIMO–OFDM system,” Digital Signal Processing, vol. 23, no. 1, pp. 275-280, 2013.
  • N. Farsad, N. Shlezinger, A.J. Goldsmith, and Y.C. Eldar, "Data-driven symbol detection via model-based machine learning," in 2021 IEEE Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 2021, pp. 571-575.
  • M.N. Seyman, “Symbol detection based on backtracking search algorithm in MIMO-NOMA systems,” Computer Systems Science & Engineering, vol. 40, no. 2, pp. 795-804, 2022.
  • R. Jiang, Z. Fei, S. Cao, C. Xue, M. Zeng, and Q. Tang, “Deep learning-aided signal detection for two-stage index modulated universal filtered multi-carrier systems,” IEEE Transactions on Cognitive Communications and Networking, vol. 8, no. 1, 2022.
  • C. Lin and Q. Chang, “A deep learning approach for MIMO-NOMA downlink signal detection,” Sensors, no. 19, pp. 1-22, 2019.
  • N. Thompson and J. Thompson, “Deep learning for signal detection in non-orthogonal multiple access wireless systems,” in 2019 UK/China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-4.
  • H. Ye, G. Y. Li, and B. H. Juang, “Power of deep learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Communication Letters, vol. 7, no. 1, pp. 114-1147, 2018.
  • J.-M. Kang, C.-J. Chun, and I.-M. J. I. A. Kim, “Deep learning based channel estimation for MIMO systems with received SNR feedback,” IEEE Access, vol. 8, pp. 121162-121181, 2020.
  • M. H. Essai Ali, “Deep learning-based pilot-assisted channel state estimator for OFDM systems,” IET Communications, vol. 15, no. 2, pp. 257-264, Jan. 2021.
  • N. Thompson and J. Thompson, “Deep learning for signal detection in non-orthogonal multiple access wireless systems,” in 2019 UK/China Emerging Technologies (UCET), Glasgow, United Kingdom, 2019, pp. 1-4.
  • C. He, Y. Hu, Y. Chen, and B. Zeng, “Joint power allocation and channel assignment for NOMA with deep reinforcement learning,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 10, pp. 2200-2210, 2019.
  • X. Wang, T. Wild, F. Schaich, and S. ten Brink, "Pilot-aided channel estimation for universal filtered multi-carrier," in 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 2015, pp. 1-5.
  • Y. Xu, H. Chu, and X. Wang, "Joint timing offset and channel estimation for multi-user UFMC uplink," IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 236-239, Feb. 2020.
  • L. Zhang, C. He, J. Mao, A. Ijaz, and P. Xiao, "Channel estimation and optimal pilot signals for universal filtered multi-carrier (UFMC) systems," in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 2017, pp. 1-6.
  • Md. F. Ahammed, A.A. Molla, R. Kadir, M.I. Kadir, “Deep bidirectional LSTM for the signal detection of universal filtered multicarrier systems”, Machine Learning with Applications, vol. 10, 2022.
  • Y. Luan and S. Lin, "Research on Text Classification Based on CNN and LSTM," 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, pp. 352-355, 2019.
  • J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B.Shuai, T. Liu, X. Wang, G. Wang, J. Cai, T. Chen, “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp.354-377, 2018.
  • F. Stoican, Y. He, Y. Liu et al., “Application of CNN-LSTM in Gradual Changing Fault Diagnosis of Rod Pumping System”, Hindawi, Mathematical Problems in Engineering, p. 9, 2019.
  • P. Görgel ve E. Kavlak, "Uzun Kısa Süreli Hafıza ve Evrişimsel Sinir Ağları ile Rüzgar Enerjisi Üretim Tahmini", Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 11, no. 1, pp. 69-80, Mar. 2020.
  • M.M. Eid et al., “Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases,” Mathematics, vol. 10, no. 20, p. 3845, Oct. 2022, doi: 10.3390/math10203845. [Online].
There are 26 citations in total.

Details

Primary Language English
Subjects Deep Learning, Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Research Articles
Authors

Fatma Kebire Bardak 0000-0002-9380-2330

Muhammet Nuri Seyman 0000-0002-8763-7834

Early Pub Date October 25, 2024
Publication Date October 29, 2024
Submission Date August 4, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 6 Issue: 2

Cite

APA Bardak, F. K., & Seyman, M. N. (2024). Deep Learning Models For Symbol Detection in UFMC Systems. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 6(2), 222-229. https://doi.org/10.46387/bjesr.1528035
AMA Bardak FK, Seyman MN. Deep Learning Models For Symbol Detection in UFMC Systems. Müh.Bil.ve Araş.Dergisi. October 2024;6(2):222-229. doi:10.46387/bjesr.1528035
Chicago Bardak, Fatma Kebire, and Muhammet Nuri Seyman. “Deep Learning Models For Symbol Detection in UFMC Systems”. Mühendislik Bilimleri Ve Araştırmaları Dergisi 6, no. 2 (October 2024): 222-29. https://doi.org/10.46387/bjesr.1528035.
EndNote Bardak FK, Seyman MN (October 1, 2024) Deep Learning Models For Symbol Detection in UFMC Systems. Mühendislik Bilimleri ve Araştırmaları Dergisi 6 2 222–229.
IEEE F. K. Bardak and M. N. Seyman, “Deep Learning Models For Symbol Detection in UFMC Systems”, Müh.Bil.ve Araş.Dergisi, vol. 6, no. 2, pp. 222–229, 2024, doi: 10.46387/bjesr.1528035.
ISNAD Bardak, Fatma Kebire - Seyman, Muhammet Nuri. “Deep Learning Models For Symbol Detection in UFMC Systems”. Mühendislik Bilimleri ve Araştırmaları Dergisi 6/2 (October 2024), 222-229. https://doi.org/10.46387/bjesr.1528035.
JAMA Bardak FK, Seyman MN. Deep Learning Models For Symbol Detection in UFMC Systems. Müh.Bil.ve Araş.Dergisi. 2024;6:222–229.
MLA Bardak, Fatma Kebire and Muhammet Nuri Seyman. “Deep Learning Models For Symbol Detection in UFMC Systems”. Mühendislik Bilimleri Ve Araştırmaları Dergisi, vol. 6, no. 2, 2024, pp. 222-9, doi:10.46387/bjesr.1528035.
Vancouver Bardak FK, Seyman MN. Deep Learning Models For Symbol Detection in UFMC Systems. Müh.Bil.ve Araş.Dergisi. 2024;6(2):222-9.