Research Article
BibTex RIS Cite

ZM21 Magnezyum Alaşımına Lantan ve Kalsiyum İlavesinin Mikroyapı, Mekanik ve Hadde Özelliklerine Etkisi

Year 2021, , 1024 - 1031, 31.12.2021
https://doi.org/10.35193/bseufbd.1003822

Abstract

Bu çalışmada ZM21 Magnezyum (Mg) alaşımına La ve Ca ilavesinin döküm ve hadde sonrası mikroyapı, mekanik ve korozyon özellikleri incelenmiştir. Mikroyapı sonuçları incelendiğinde haddeleme sonrasında La ilaveli alaşımda taneler incelirken ikincil fazların bir miktar hadde yönünde uzadığı görülmüştür. Bundan farklı olarak Ca ilaveli alaşımda oluşan fazların haddeleme esnasında kırıldığı tespit edilmiştir. XRD sonuçlarına göre alaşımlarda MgZn, MgZn2, MgZn3, C5Zn3, Ca2Mg6Zn3, LaZn2, LaMg3 fazlarının oluştuğu görüldü. Daldırma korozyon özelliğine bakıldığında ZM21 Mg alaşımına kıyasla ZM21+0,5(La) Mg alaşımının hem döküm hem hadde olarak daha az ağırlık kaybı yaşanmıştır. Fakat döküm halinde ZM21+0,5(Ca) alaşımı daha düşük, haddelenmiş olarakta çok daha fazla ağırlık kaybı sergilemiştir.

Supporting Institution

Karabük Üniversitesi (BAP) Bilimsel Araştırma Projeleri

Project Number

FDK-2019-2103

Thanks

Bu araştırma, Karabük Üniversitesi (BAP) Bilimsel Araştırma Projeleri tarafından proje no. FDK-2019-2103.

References

  • Ünal, M., Gören, H. A., Koç, E., Türen, Y., Ahlatçı, H., & Sun, Y. (2017). Effect of cooling rate and 2 wt % silicon addition on microstructure and mechanical properties of AZ91 Mg alloys. International Journal of Mechanical and Production Engineering, 5 (7), 25-28.
  • Mordike, B. L. & Ebert, T. (2001). Magnesium: properties application-potential. Materials Science and Engineering: A, 302, 37-45.
  • Ballam, L.R., Arab, H., Bestetti, M., Franz, S., Masi, G., Sola, R., Donati, L., & Martini, C. ( 2021). Improving the corrosion resistance of wrought ZM21 magnesium alloys by plasma electrolytic oxidation and powder coating. Materials. 14, 2268.
  • Zhang, E., Yin, D., Xu, L., Yang, L. & Yang, K. (2009). Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering: C, 29, 987–993.
  • Sriraman, N. & Kumaran, S. (2019). Improved bio-acceptability of thermomechanically processed ZM21 magnesium alloy. Materials Research Express, 6 (5).
  • Li, Q., Fan, S., Peng, J., Yang, J., Jiang, X. & Pan, F. (2014). Effects of Ce on microstructure and mechanical properties of ZM21 magnesium alloy. Materials Research Innovations, 18 (4), 178-182.
  • Thirumurugan, M., Kumaran, S., Suwas, S. & Rao T. S. (2011). Effect of rolling temperature and reduction in thickness on microstructure and mechanical properties of ZM21 magnesium alloy and its subsequent annealing treatment. Materials Science and Engineering: A, 528 (29-30), 8460-8468.
  • Zengin H. & Türen Y. (2018). Effect of La content and extrusion temperature on microstructure, texture and mechanical properties of Mg-Zn-Zr magnesium alloy. Materials Chemistry and Physics, 214, 421-430.
  • Xie, Y. P., Wang, Z. Y., & Hou Z. F. (2013). The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg–Zn alloys. Scripta Materialia, 68: 495-498.
  • Alidoust, M., Kleiven, D. & Akola, J. (2020). Density functional simulations of pressurized Mg-Zn and Al-Zn alloys. Physical Review Materials, 4, 4: 045002.
  • Ghosh, P. & Medraj, M. (2013). Thermodynamic calculation of the Mg–Mn–Zn and Mg–Mn–Ce systems and re-optimization of their constitutive binaries. Calphad, 41, 89-107.
  • Alessia, P., Arjun, P., Vitalij, P., Marina, P., Carlo, F., Volodymyr, S., Anja, M. & Pietro, M. (2018). Effect of chemical and physical pressure on the superconducting properties of LaZn2-xSn2”, APS March Meeting 1-2.
  • Wang, M. H., Pan, R. K., Li, P. B., Bian, N., Tang, B.Y., Peng, L. M. & Ding, W. J. (2014). First-principles study on mechanical properties of LaMg3 and LaCuMg2. Journal of Central South University., 21(6), 2136-2142.
  • Sreejith, S. S., Mohan, N. & Kurup, M. R. P. (2018). Experimental and theoretical analysis of a rare nitrato bridged 3d-4f complex containing LaZn2 core synthesized from a Zn(II) metallolig and. Journal of Molecular Structure, 1153, 85-95.
  • Fu, J., Liu, K., Du, W., Wang, Z., Li, S. & Du, X. (2017). Microstructure and mechanical properties of the as-cast Mg-Zn-Mn-Ca alloys. IOP Conference Series Materials Science and Engineering, 182, 012053.
  • Gao, L., Yan, H., Luo, J., Luo, A. A. & Chen R. (2013). Microstructure and mechanical properties of a high ductility Mg–Zn–Mn–Ce magnesium alloy. Journal of Magnesium and Alloys, 1(4), 283-291.
  • Chen, Z. H., Zhou, T., Chen, D., Yan, H. G., & Chen, J. H. (2008). Microstructure characterisation and mechanical properties of rapidly solidified Mg–Zn–Ca alloys with Ce addition. Materials Science and Technology, 24(7), 848-855.
  • Candan, S., Unal, M., Koc, E., Turen, Y. & Candan, E. (2011). Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. Journal of Alloys and Compounds, 509 (5), 1958-1963.
  • Yang, J., Peng, J., Li, M., Nyberg, E. A. & Pan, F.S. (2017). Effects of Ca Addition on the Mechanical Properties and Corrosion Behavior of ZM21 Wrought Alloys. Acta Metallurgica Sinica, 30(1) 53-65.

The Effect of Lanthane and Calcium Additional to ZM21 Magnesium Alloy on Microstructure, Mechanical and Rolling Properties

Year 2021, , 1024 - 1031, 31.12.2021
https://doi.org/10.35193/bseufbd.1003822

Abstract

In In this study, the microstructure, mechanical and corrosion properties of La and Ca addition to ZM21 Magnesium (Mg) alloy after casting and rolling were investigated. When the microstructure results were examined, it was observed that the secondary phases elongated a little in the rolling direction, while the grains were thinner in the La added alloy after rolling. Differently from this, it was determined that the phases formed in the Ca-added alloy were broken during rolling. According to XRD results, it was observed that MgZn, MgZn2, MgZn3, C5Zn3, Ca2Mg6Zn3, LaZn2, LaMg3 phases were formed in the alloys. Considering the immersion corrosion property, ZM21+0.5(La) Mg alloy experienced less weight loss in both casting and rolling compared to ZM21 Mg alloy. however, ZM21+0.5(Ca) alloy exhibited lower weight loss in cast form and much greater weight loss in rolled form.

Project Number

FDK-2019-2103

References

  • Ünal, M., Gören, H. A., Koç, E., Türen, Y., Ahlatçı, H., & Sun, Y. (2017). Effect of cooling rate and 2 wt % silicon addition on microstructure and mechanical properties of AZ91 Mg alloys. International Journal of Mechanical and Production Engineering, 5 (7), 25-28.
  • Mordike, B. L. & Ebert, T. (2001). Magnesium: properties application-potential. Materials Science and Engineering: A, 302, 37-45.
  • Ballam, L.R., Arab, H., Bestetti, M., Franz, S., Masi, G., Sola, R., Donati, L., & Martini, C. ( 2021). Improving the corrosion resistance of wrought ZM21 magnesium alloys by plasma electrolytic oxidation and powder coating. Materials. 14, 2268.
  • Zhang, E., Yin, D., Xu, L., Yang, L. & Yang, K. (2009). Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Materials Science and Engineering: C, 29, 987–993.
  • Sriraman, N. & Kumaran, S. (2019). Improved bio-acceptability of thermomechanically processed ZM21 magnesium alloy. Materials Research Express, 6 (5).
  • Li, Q., Fan, S., Peng, J., Yang, J., Jiang, X. & Pan, F. (2014). Effects of Ce on microstructure and mechanical properties of ZM21 magnesium alloy. Materials Research Innovations, 18 (4), 178-182.
  • Thirumurugan, M., Kumaran, S., Suwas, S. & Rao T. S. (2011). Effect of rolling temperature and reduction in thickness on microstructure and mechanical properties of ZM21 magnesium alloy and its subsequent annealing treatment. Materials Science and Engineering: A, 528 (29-30), 8460-8468.
  • Zengin H. & Türen Y. (2018). Effect of La content and extrusion temperature on microstructure, texture and mechanical properties of Mg-Zn-Zr magnesium alloy. Materials Chemistry and Physics, 214, 421-430.
  • Xie, Y. P., Wang, Z. Y., & Hou Z. F. (2013). The phase stability and elastic properties of MgZn2 and Mg4Zn7 in Mg–Zn alloys. Scripta Materialia, 68: 495-498.
  • Alidoust, M., Kleiven, D. & Akola, J. (2020). Density functional simulations of pressurized Mg-Zn and Al-Zn alloys. Physical Review Materials, 4, 4: 045002.
  • Ghosh, P. & Medraj, M. (2013). Thermodynamic calculation of the Mg–Mn–Zn and Mg–Mn–Ce systems and re-optimization of their constitutive binaries. Calphad, 41, 89-107.
  • Alessia, P., Arjun, P., Vitalij, P., Marina, P., Carlo, F., Volodymyr, S., Anja, M. & Pietro, M. (2018). Effect of chemical and physical pressure on the superconducting properties of LaZn2-xSn2”, APS March Meeting 1-2.
  • Wang, M. H., Pan, R. K., Li, P. B., Bian, N., Tang, B.Y., Peng, L. M. & Ding, W. J. (2014). First-principles study on mechanical properties of LaMg3 and LaCuMg2. Journal of Central South University., 21(6), 2136-2142.
  • Sreejith, S. S., Mohan, N. & Kurup, M. R. P. (2018). Experimental and theoretical analysis of a rare nitrato bridged 3d-4f complex containing LaZn2 core synthesized from a Zn(II) metallolig and. Journal of Molecular Structure, 1153, 85-95.
  • Fu, J., Liu, K., Du, W., Wang, Z., Li, S. & Du, X. (2017). Microstructure and mechanical properties of the as-cast Mg-Zn-Mn-Ca alloys. IOP Conference Series Materials Science and Engineering, 182, 012053.
  • Gao, L., Yan, H., Luo, J., Luo, A. A. & Chen R. (2013). Microstructure and mechanical properties of a high ductility Mg–Zn–Mn–Ce magnesium alloy. Journal of Magnesium and Alloys, 1(4), 283-291.
  • Chen, Z. H., Zhou, T., Chen, D., Yan, H. G., & Chen, J. H. (2008). Microstructure characterisation and mechanical properties of rapidly solidified Mg–Zn–Ca alloys with Ce addition. Materials Science and Technology, 24(7), 848-855.
  • Candan, S., Unal, M., Koc, E., Turen, Y. & Candan, E. (2011). Effects of titanium addition on mechanical and corrosion behaviours of AZ91 magnesium alloy. Journal of Alloys and Compounds, 509 (5), 1958-1963.
  • Yang, J., Peng, J., Li, M., Nyberg, E. A. & Pan, F.S. (2017). Effects of Ca Addition on the Mechanical Properties and Corrosion Behavior of ZM21 Wrought Alloys. Acta Metallurgica Sinica, 30(1) 53-65.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Halil Ahmet Gören 0000-0003-4455-4024

Mehmet Ünal 0000-0003-3836-4566

Yunus Türen 0000-0001-8755-1865

Hayrettin Ahlatcı 0000-0002-6766-4974

Project Number FDK-2019-2103
Publication Date December 31, 2021
Submission Date October 2, 2021
Acceptance Date November 4, 2021
Published in Issue Year 2021

Cite

APA Gören, H. A., Ünal, M., Türen, Y., Ahlatcı, H. (2021). ZM21 Magnezyum Alaşımına Lantan ve Kalsiyum İlavesinin Mikroyapı, Mekanik ve Hadde Özelliklerine Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1024-1031. https://doi.org/10.35193/bseufbd.1003822