Research Article
BibTex RIS Cite

Flow Control around NACA 0015 Airfoil by Trailing Edge Flow Suction

Year 2019, , 153 - 160, 30.09.2019
https://doi.org/10.35193/bseufbd.588280

Abstract



In this study, the effect of flow suction at
trailing edge on aerodynamic performance of NACA 0015 airfoil was investigated,
numerically. Numerical solutions were performed by ANSYS Fluent using k-k
L
transition model at Reynolds number of Re=48000. Three different suction ratios
(θ=0.05, 0.1 ve 0.2) were tested at four different angles of attacks
(α=2°, 4°, 6° ve 8°) and obtained results were compared
with the base case.
 Laminar separation
bubble was controlled significantly at low angles of attack. It was observed
that C
L/CD increases up to 2.4 times CL/CD
of the base case with the increasing suction ratio at
α=2° ve 4°. On the other hand,
it was observed that the
CL/CD
did not alter significantly in comparison with the base case at
α=8° since CD also
increases while
CL increases.  




References

  • [1] Ricci, R., & Montelpare, S. (2005). A quantitative IR thermographic method to study the laminar separation bubble phenomenon. International Journal of Thermal Sciences, 44, 709-719.
  • [2] Zhang, W., Hain, R., & Kähler, C. J. (2008). Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Experiments in Fluids, 45, 725-743.
  • [3] Genç, M. S., Karasu, İ., & Açıkel, H. H. (2012). An experimental study on aerodynamic of NACA2415 aerofoil at low Re numbers. Experimental Thermal and Fluid Science, 39, 252-264.
  • [4] Juanmian, L., Feng, G., & Can, H. (2013). Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number. Chinese Journal of Aeronautics, 26(4), 918-925.
  • [5] Demir, H., & Genç, M. S. (2017). An experimental investigation of laminar separation bubble formation on flexible membrane wing. European Journal of Mechanics / B Fluids, 65, 326-338.
  • [6] Genç, M. S., Karasu, İ., Açıkel, H. H., & Akpolat, M. T. (2012). Low Reynolds Number Flows and Transition, Low Reynolds Number Aerodynamics and Transition. IntechOpen, 3-28.
  • [7] Huang, L., Huang, P. G., & LeBeau, R. P. (2004). Numerical study of blowing and suction control mechanism on NACA0012 airfoil. Journal of Aircraft, 41(5), 1005-1013.
  • [8] Johari, H., Henoch, C., Custodio, D., & Levshin, A. (2007). Effect of leading-edge protuberances on airfoil performance. AIAA Journal, 45(11), 2634-2642.
  • [9] Genç, M. S., Kaynak, Ü., & Yapici, H. (2011). Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. European Journal of Mechanics / B Fluids, 30, 218-235.
  • [10] Yousefi, K., & Saleh, R. (2014). The effect of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry. Journal of Theoretical and Applied Mechanics, 52(1), 165-179.
  • [11] Açıkel, H. H. & Genç, M. S. (2016). Flow control with perpendicular acoustic forcing on NACA 2415 aerofoil at low Re numbers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(13), 2447-2462.
  • [12] Genç, M. S., Açıkel, H. H., Akpolat, M. T., Özkan, G. & Karasu, İ. (2016). Acoustic control of flow over NACA 2415 airfoil at low Reynolds numbers. Journal of Aerospace Engineering 29(6), 1-19.
  • [13] Siozos-Rousoulis, L., Chris, L., & Ghader, G. (2017). A flow control technique for noise reduction of a rod-airfoil configuration. Journal of Fluids and Structures, 69, 293-307.
  • [14] Akbıyık, H., Yavuz, H., & Akansu, Y. E. (2017). Comparison of the linear and spanwise-segmented DBD plasma actuators on flow control around a NACA 0015 airfoil. IEEE Transactions on Plasma Science, 45(11), 2913-2921.
  • [15] Akbıyık, H., Yavuz, H., & Akansu, Y. E. (2018). A study on the plasma actuator electrode geometry configuration for improvement of the aerodynamic performance of an airfoil. Strojniski Vestnik/Journal of Mechanical Engineering, 64 (12), 719-725.
  • [16] Açıkel, H. H. & Genç, M. S. (2018). Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy, 165, 176-190.
  • [17] Genç, M. S., Koca, K., & Açıkel, H. H. (2019). Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element. Energy, 176, 320-334.
  • [18] Walters, D. K., & Cokljat, D. (2008). A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. ASME. Journal of Fluids Engineering, 130(12), 1-14.
  • [19] Fluent, A.N.S.Y.S. (2016). Ansys Fluent Theory Guide. ANSYS Inc, USA.
  • [20] Genç, M. S., Kaynak, Ü., & Lock, G. D. (2009). Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(3), 217-231.
  • [21] Choudhry, A., Arjomandi, M., & Kelso, R. (2015). A study of long separation bubble on thick airfoils and its consequent effects. International Journal of Heat and Fluid Flow, 52, 84-96.

NACA 0015 Kanat Profilinin Etrafındaki Akışın Firar Kenarından Akış Emme ile Kontrol Edilmesi

Year 2019, , 153 - 160, 30.09.2019
https://doi.org/10.35193/bseufbd.588280

Abstract

Bu çalışmada,
kanat firar kenarında uygulanan akış emme yönteminin NACA 0015 kanat profilinin
aerodinamik performansı üzerine etkileri sayısal çalışma ile araştırılmıştır.
Sayısal çözümler Reynolds sayısının Re=48000 değerinde k-k
L
transition model kullanılarak ANSYS Fleunet tarafından gerçekleştirilmiştir. Üç
farklı emme oranı (θ=0.05, 0.1 ve 0.2) dört farklı kanat hücum açısında (α=2°,
4°, 6° ve 8°) test edilmiştir ve elde edilen bulgular kontrolsüz durum ile
kıyaslanmıştır. Düşük hücum açılarında laminer ayrılma kabarcığı önemli ölçüde
kontrol edilmiştir. Hücum açılarının α=2° ve 4° değerlerinde artan emme oranı
ile C
L/CD oranının kontrolsüz durumun 2.4 katına kadar
arttığı gözlemlenmiştir. Ancak hücum açısının α=8° değerinde kaldırma
katsayısının artması ile birlikte sürüklenme katsayısının da artmasından dolayı
C
L/CD oranının kontrolsüz duruma göre önemli ölçüde
artmadığı gözlemlenmiştir.

References

  • [1] Ricci, R., & Montelpare, S. (2005). A quantitative IR thermographic method to study the laminar separation bubble phenomenon. International Journal of Thermal Sciences, 44, 709-719.
  • [2] Zhang, W., Hain, R., & Kähler, C. J. (2008). Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Experiments in Fluids, 45, 725-743.
  • [3] Genç, M. S., Karasu, İ., & Açıkel, H. H. (2012). An experimental study on aerodynamic of NACA2415 aerofoil at low Re numbers. Experimental Thermal and Fluid Science, 39, 252-264.
  • [4] Juanmian, L., Feng, G., & Can, H. (2013). Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number. Chinese Journal of Aeronautics, 26(4), 918-925.
  • [5] Demir, H., & Genç, M. S. (2017). An experimental investigation of laminar separation bubble formation on flexible membrane wing. European Journal of Mechanics / B Fluids, 65, 326-338.
  • [6] Genç, M. S., Karasu, İ., Açıkel, H. H., & Akpolat, M. T. (2012). Low Reynolds Number Flows and Transition, Low Reynolds Number Aerodynamics and Transition. IntechOpen, 3-28.
  • [7] Huang, L., Huang, P. G., & LeBeau, R. P. (2004). Numerical study of blowing and suction control mechanism on NACA0012 airfoil. Journal of Aircraft, 41(5), 1005-1013.
  • [8] Johari, H., Henoch, C., Custodio, D., & Levshin, A. (2007). Effect of leading-edge protuberances on airfoil performance. AIAA Journal, 45(11), 2634-2642.
  • [9] Genç, M. S., Kaynak, Ü., & Yapici, H. (2011). Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. European Journal of Mechanics / B Fluids, 30, 218-235.
  • [10] Yousefi, K., & Saleh, R. (2014). The effect of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry. Journal of Theoretical and Applied Mechanics, 52(1), 165-179.
  • [11] Açıkel, H. H. & Genç, M. S. (2016). Flow control with perpendicular acoustic forcing on NACA 2415 aerofoil at low Re numbers. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(13), 2447-2462.
  • [12] Genç, M. S., Açıkel, H. H., Akpolat, M. T., Özkan, G. & Karasu, İ. (2016). Acoustic control of flow over NACA 2415 airfoil at low Reynolds numbers. Journal of Aerospace Engineering 29(6), 1-19.
  • [13] Siozos-Rousoulis, L., Chris, L., & Ghader, G. (2017). A flow control technique for noise reduction of a rod-airfoil configuration. Journal of Fluids and Structures, 69, 293-307.
  • [14] Akbıyık, H., Yavuz, H., & Akansu, Y. E. (2017). Comparison of the linear and spanwise-segmented DBD plasma actuators on flow control around a NACA 0015 airfoil. IEEE Transactions on Plasma Science, 45(11), 2913-2921.
  • [15] Akbıyık, H., Yavuz, H., & Akansu, Y. E. (2018). A study on the plasma actuator electrode geometry configuration for improvement of the aerodynamic performance of an airfoil. Strojniski Vestnik/Journal of Mechanical Engineering, 64 (12), 719-725.
  • [16] Açıkel, H. H. & Genç, M. S. (2018). Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy, 165, 176-190.
  • [17] Genç, M. S., Koca, K., & Açıkel, H. H. (2019). Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element. Energy, 176, 320-334.
  • [18] Walters, D. K., & Cokljat, D. (2008). A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow. ASME. Journal of Fluids Engineering, 130(12), 1-14.
  • [19] Fluent, A.N.S.Y.S. (2016). Ansys Fluent Theory Guide. ANSYS Inc, USA.
  • [20] Genç, M. S., Kaynak, Ü., & Lock, G. D. (2009). Flow over an aerofoil without and with a leading-edge slat at a transitional Reynolds number. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(3), 217-231.
  • [21] Choudhry, A., Arjomandi, M., & Kelso, R. (2015). A study of long separation bubble on thick airfoils and its consequent effects. International Journal of Heat and Fluid Flow, 52, 84-96.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tahir Durhasan 0000-0001-5212-9170

Publication Date September 30, 2019
Submission Date July 8, 2019
Acceptance Date September 5, 2019
Published in Issue Year 2019

Cite

APA Durhasan, T. (2019). NACA 0015 Kanat Profilinin Etrafındaki Akışın Firar Kenarından Akış Emme ile Kontrol Edilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 153-160. https://doi.org/10.35193/bseufbd.588280