Research Article
BibTex RIS Cite

Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu

Year 2020, , 994 - 1003, 30.12.2020
https://doi.org/10.35193/bseufbd.723358

Abstract

Bu çalışmada krom(III) oksit (Cr2O3) nanoyapıları flor katkılı kalay oksit (FTO) kaplı cam elektrot yüzeyinde elektrokimyasal teknik kullanılarak sentezlenmiştir. Elektrolit çözeltisi olarak CrCl3 içeren ortamda öncelikle krom oksihidroksit türleri oluşturulmuş ve sonrasında ısıl işlem uygulanarak oksit formuna dönüşüm sağlanmıştır. Elektrokimyasal sentez üzerine indirgenme potansiyeli ve depozisyon süresinin etkisi incelenmiştir. Elektrokimyasal olarak biriktirilen Cr2O3 nanoyapılarının karakterizasyonu XRD, SEM ve EDS teknikleri kullanılarak gerçekleştirilmiştir. -1,4 V sabit potansiyelde hazırlanan Cr2O3 nanoyapılarının XRD spektrumunda Cr2O3’in (110) düzlemine ait kırınım piki elde edilmiştir. EDS spektrumu ise elementel olarak oldukça saf Cr2O3 nanoyapılarının sentezlendiğini desteklemiştir.

Thanks

Bu çalışmanın gerçekleştirilmesinde laboratuvar alt yapısının kullanılmasına izin verdiği için Atatürk Üniversitesi Fen Fakültesi Dekanlığı’na teşekkür ederiz. Sentezlenen elektrotların karakterizasyonlarının yapılması için desteklerini esirgemeyen Atatürk Üniversitesi Doğu Anadolu Yüksek Teknoloji Araştırma Merkezi’ne de (DAYTAM) teşekkürlerimizi sunarız.

References

  • Eklund, P., Mikkelsen, N.J., Sillassen, M., Bienk, E.J., & Bøttiger, J. (2008). Chromium oxide-based multilayer coatings deposited by reactive magnetron sputtering in an industrial setup. Surface and Coatings Technology, 203, 156-159.
  • Mougin, J., Bihan, T.L., & Lucazeau, G. (2001). High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 62, 553-563.
  • ang, X.L., Gao, K.W., Luo, F., Emirov, Y., Levin, A.A., & Volinsky, A.A. (2009). Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings. Thin Solid Films, 517, 1922-1927.
  • Gordo, E., Chen, G.Z. & Fray, D.J. (2004). Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta, 49, 2195-2208.
  • Barros, A.M., Espinosa, D.C.R., & Tenorio, J.A.S. (2004). Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement. Thin Solid Films, 34, 1795-1801.
  • Mndar, H., Uustare, T., Aarik, J., Tarre, A., & Rosental, A. (2007). Characterization of asymmetric rhombohedral twin in epitaxial α-Cr2O3 thin films by X-ray and electron diffraction. Thin Solid Films, 515, 4570-4579.
  • Ouyang, J.H., & Sasaki, S. (2001). Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings. Wear, 249, 56-66.
  • Morisato, T., Jones, N.O., Khanna, S.N., & Kawazoe, Y. (2006). Stable aluminum and chromium oxide clusters as precursors to nanoscale materials. Computational Materials Science, 35, 366-370.
  • Kohli, N., Singh, O., Anand, K., & Singh, R.C. (2012). Effect of reaction temperature on crystallite size and sensing response of chromium oxide nanoparticles. Materials Research Bulletin, 47, 2072-2076.
  • Lei, S.J., Peng, X.M., Liang, Z.H., Li, X.P., Wang, C.Y., Cheng, B.C., Xiao, Y.H., & Zhou, L. (2012). Self-template formation and properties study of Cr2O3 nanoparticle tubes. Journal of Materials Chemistry, 22, 1643-1652.
  • Guo, Z.Q., Ping, Z.F., & Chen N. (1996). Production and properties of Cr2O3 raw material for refractories. Industrial Ceramics, 16, 172.
  • Cellard, A., Zenati, R., Garnier, V., Fantozzi, G., & Baret G. (2007). Optimization of chromium oxide nanopowders dispersion for spray-drying. Journal of the European Ceramic Society, 27, 1017-1021.
  • Li, M.S., Feng, C.J., & Wang, F.H. (2006). Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating. Transactions of Nonferrous Metals Society of China, 16, 276-279.
  • Siab, R., Huvier, C., Kemdehoundja, M., Grosseau-Poussard, J.L., & Dinhut, J.F. (2009). On the relation between damage rate and stress level evolution in α-Cr2O3 thin films growing on Ni–33at%Cr. Corrosion Science, 51, 2246-2248.
  • Shiratsuchi, Y., Kawahara, S.I., Noutomi, H., Arakawa, K., Mori, H., & Nakatani, R. (2011). Effect of crystallinity of Co layer on perpendicular exchange bias in Au-capped ultrathin Co film on Cr2O3(0 0 0 1) thin film. Journal of Magnetism and Magnetic Materials, 323, 579-586.
  • Rafi, U.D., Qu, X.H., Li, P., Lin, Z., Wan, Q., Iqbal, M.Z., Rafique, M.Y., Farooq, M.H., & Islam, U.D. (2012). Superior Catalytic Effects of Nb2O5, TiO2, and Cr2O3 Nanoparticles in Improving the Hydrogen Sorption Properties of NaAlH4. The Journal of Physical Chemistry C, 116, 11924-11938.
  • Bates, M.K., Jia, Q.Y., Ramaswamy, N., Allen, R.J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 119, 5467-5477.
  • Karuppuchamy, S., Matsui, H., Kira, K., Hassan, M.A., &Yoshihara, M. (2012). Visible light induced photocatalytic activity of Nb2O5/carbon cluster/Cr2O3 composite materials. Ceramics International, 38, 1515-1521.
  • Khaleel, A., Shehadi, I., & Shamisi, M.A. (2010). Nanostructured chromium–iron mixed oxides: Physicochemical properties and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 355, 75-82.
  • Shaislamov, U., Yang, B.Y., & Park, K. (2012). Enhanced photocatalytic properties of TiO2 nanotube arrays with Cr2O3 nanoparticles under visible light. Journal of the Korean Physical Society, 61, 759–763.
  • Khassin, A.A., Sipatrov, A.G., Demeshkina, M.P., & Minyukova, T.P. (2009). Partially hydrated iron–chromium oxide catalyst for the Fischer-Tropsch synthesis. Reaction Kinetics and Catalysis Letters, 97, 371–379.
  • Kim, A.R., Lee, B., Park, M.J., Moon, D.J., & Bae, J.W. (2012). Catalytic performance on CuO–Cr2O3–Ga2O3 mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ratio. Catalysis Communications, 19, 66-69.
  • Tamiolakis, I., Lykakis, I.N., Katsonlidis, A.P., Malliakas, C.D., & Armatas, G.S. (2012). Catalytic performance on CuO–Cr2O3–Ga2O3 mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ra Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 22, 6919-6927.
  • Wang, F., Fan J.L., Zhao, Y., Zhang, W.X., Liang, Y., Lu, J.Q., Lun, M.F., & Wang, Y.J. (2014). Effects of yttrium-doping on the performance of Cr2O3 catalysts for vapor phase fluorination of 1,1,2,3-tetrachloropropene. Journal of Fluorine Chemistry, 166, 78-83.
  • Khafri M.A., & Lafdani, M.H.K. (2012). A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent. Powder Technology, 222, 152-159.
  • Song, M.Y., Kwon, S.N., Park, H.R., & Mumn, D.R. (2011). Effects of fine Cr2O3 addition on Mg's hydrogen-storage performance. Journal of Industrial and Engineering Chemistry, 17, 167-169.
  • Jin, H., Huang, Y.J., & Jian, J.W. (2015). Sensing mechanism of the zirconia-based highly selective NO sensor by using a plate-like Cr2O3 sensing electrode. Sensors and Actuators B: Chemical, 219, 112-118.
  • Hao, R., Yuan, J.Y., & Peng, Q. (2006). Fabrication and Sensing Behavior of Cr2O3 Nanofibers via In situ Gelation and Electrospinning. Chemistry Letters, 35, 1248-1249.
  • Yoon, J.W., Kim, H.J., Jeong, H.M., & Lee J.H. (2014). Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sensors and Actuators B: Chemical, 202, 263-271.
  • Stanoiu, A., Simion, C.E., Diamandescn, L., Mihaila, D.T., & Feder, M. (2012). NO2 sensing properties of Cr2O3 highlighted by work function investigations. Thin Solid Films, 522, 395-400.
  • Montiel, H., Alvarez, G., Conde-Gallardo, A., & Zamorano, R. (2015). Microwave absorption behavior in Cr2O3 nanopowders. Journal of Alloys and Compounds, 628, 272-276.
  • Lebreau, F., Islam, M.M., Diawara, B., & Marcus, P. (2014). Structural, Magnetic, Electronic, Defect, and Diffusion Properties of Cr2O3: A DFT+U Study. The Journal of Physical Chemistry C, 118, 18133-18145.
  • Hehl, F.W., Obukhov, Y.N., Rivera, J.P., & Schmid, H. (2009). Magnetoelectric Cr2O3 and relativity theory. The European Physical Journal B, 71, 321.
  • Boldyrev, Y.I., Ivanova, N.D., Sokolsky, G.V., Ivanov, S.V., & Stadnik, O.A. (2013). Thin film nonstoichiometric chromium oxide-based cathode material for rechargeable and primary lithium batteries. Journal of Solid State Electrochemistry, 17, 2213–2221.
  • Sahan, H., Goktepe, H., Patat, S., & Ulgen, A. (2010). Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 181, 1437-1444.
  • Lin, X.T., Wu, K.Q., Shao, L.Y., Shui, M., Jiang, X.X., Wang, D.G., Long, N.B., Ren, Y.L., & Shu, J. (2014). Facile preparation of Cr2O3@Ag2O composite as high performance lithium storage material. Journal of Alloys and Compounds, 598, 68-72.
  • Cheng, C.X., Yi, H.Y., & Chen, F. (2014). Effect of Cr2O3 Coating on LiNi1/3Co1/3Mn1/3O2 as Cathode for Lithium-Ion Batteries. Journal of Electronic Materials, 43, 3681–3687.
  • Khamlich, S., Mccrindle, R., Nuru, Z.Y., Cingo, N., & Maaza, M. (2013). Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers. Applied Surface Science, 265, 745-749.
  • Khamlich, S., Nemraoui, O., Mongwaketsi, N., Mccrindle, R., Cingo, N., & Maaza, M. (2012). Black Cr/α-Cr2O3 nanoparticles based solar absorbers. Physica B: Condensed Matter, 407, 1509-1512.
  • Gibot, P., & Vidal, L. (2010). Original synthesis of chromium (III) oxide nanoparticles. Journal of the European Ceramic Society, 30, 911-915.
  • Jankovsky, O., Sedmidubsky, D., Sofer, Z., Luxa, J., & Bartunek, V. (2015). Simple synthesis of Cr2O3 nanoparticles with a tunable particle size. Ceramics International, 41, 4644-4650.
  • Gupta, R.K., Mitchell, E., Candler, J., Kahol, P.K., Ghosh, K., & Dong, L. (2014). Facile synthesis and characterization of nanostructured chromium oxide. Powder Technology, 254, 78-81.
  • Jung, Y.S., Kim, K.H., Jang, T.Y., Tak, Y., & Baeck, S.H. (2011). Enhancement of photocatalytic properties of Cr2O3–TiO2 mixed oxides prepared by sol–gel method. Current Applied Physics, 11, 358-361.
  • El-Sheikh, S.M., Mohamed, R.M., & Fouad, O.A. (2009). Synthesis and structure screening of nanostructured chromium oxide powders. Journal of Alloys and Compounds, 482, 302-307.
  • Ocana, M. (2001). Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. Journal of the European Ceramic Society, 21, 931-939.
  • Tyagi, A.K., Mangamma, G., Kamruddin, M., Dash, S., & Raj, B. (2007). Synthesis and Characterization of Nanocrystalline Cr2O3 and ZrO2 Ceramic Materials. Journal of Nanoscience and Nanotechnology, 7, 2005-2009.
  • Pei, Z.Z., & Zhang, Y. (2008). A novel method to prepare Cr2O3 nanoparticles. Jo Materials Letters, 62, 504-506.
  • Pei, Z.Z., Xu, H.B., & Zhang, Y. (2009). Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. Journal of Alloys and Compounds, 468, L5-L8.
  • Wei, G.Y., Qu, J.K., Zheng, Y.D., Qi, T., & Guo Q. (2012). Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution. International Journal of Minerals, Metallurgy, and Materials, 19, 978–985.
  • Xu, H.T., Lou, T.J., & Li, Y.D. (2004). Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres. Inorganic Chemistry Communications, 7, 666-668.
  • Balachandran, U., Siegel, R.W., Liao, Y.X., & Askew, T.R. (1995). Synthesis, sintering, and magnetic properties of nanophase Cr2O3. Nanostructured Materials, 5, 505-512.
  • Balakrishnan, G., Kuppusami, P., Sairam, T.N., Rao, R.V.S., Mohandas, E., & Sastikumar, D. (2009). Influence of background gas atmosphere on formation of Cr2O3 thin films prepared by pulsed laser deposition. Surface Engineering, 25, 223-227.
  • Egharevba, G.O., Eleruja, M.A., Osasona, O., Akinwunmi, O.O., Olofinjana, B., Jeynes, C., & Ajayi, E.O.B. (2012). Synthesis and Some Properties of Metal Organic Chemical Vapour Deposited Lithium Chromium Oxide Thin Films. Journal of Materials Science Research, 1, 130-137.
  • He, X., Li, C., Zhu, Q., Hou, B., Jiang, Y., & Wu, L. (2014). Electrochemical mechanism of Cr(iii) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid. RSC Advances, 4, 64174-64182.
  • Liang, S., Zhang, H., Luo, M., Luo, K., Li, P., Xu, H., & Zhang, Y. (2014). Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH. Ceramics International, 40, 4367-4373.

Electrochemical Synthesis and Characterization of Cr2O3 Nanostructures

Year 2020, , 994 - 1003, 30.12.2020
https://doi.org/10.35193/bseufbd.723358

Abstract

In this study, chromium (III) oxide (Cr2O3) nanostructures were synthesized using electrochemical technique on the surface of the fluorine-doped tin oxide (FTO) coated glass electrode. Firstly, chromium oxyhydroxide species were created in the aqueous electrolyte solution containing CrCl3, and then thermal annealing was applied to convert to oxide form. The effect of reduction potential and deposition time on electrochemical synthesis was investigated. The characterization of electrochemically deposited Cr2O3 nanostructures was carried out using XRD, SEM and EDS techniques. The diffraction peak of the Cr2O3 (110) plane was obtained in the XRD spectrum of Cr2O3 nanostructures prepared at -1,4 V constant potential. The EDS spectrum supported that elementally highly pure Cr2O3 nanostructures were synthesized.

References

  • Eklund, P., Mikkelsen, N.J., Sillassen, M., Bienk, E.J., & Bøttiger, J. (2008). Chromium oxide-based multilayer coatings deposited by reactive magnetron sputtering in an industrial setup. Surface and Coatings Technology, 203, 156-159.
  • Mougin, J., Bihan, T.L., & Lucazeau, G. (2001). High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. Journal of Physics and Chemistry of Solids, 62, 553-563.
  • ang, X.L., Gao, K.W., Luo, F., Emirov, Y., Levin, A.A., & Volinsky, A.A. (2009). Investigation of microstructure and mechanical properties of multi-layer Cr/Cr2O3 coatings. Thin Solid Films, 517, 1922-1927.
  • Gordo, E., Chen, G.Z. & Fray, D.J. (2004). Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts. Electrochim. Acta, 49, 2195-2208.
  • Barros, A.M., Espinosa, D.C.R., & Tenorio, J.A.S. (2004). Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement. Thin Solid Films, 34, 1795-1801.
  • Mndar, H., Uustare, T., Aarik, J., Tarre, A., & Rosental, A. (2007). Characterization of asymmetric rhombohedral twin in epitaxial α-Cr2O3 thin films by X-ray and electron diffraction. Thin Solid Films, 515, 4570-4579.
  • Ouyang, J.H., & Sasaki, S. (2001). Effects of different additives on microstructure and high-temperature tribological properties of plasma-sprayed Cr2O3 ceramic coatings. Wear, 249, 56-66.
  • Morisato, T., Jones, N.O., Khanna, S.N., & Kawazoe, Y. (2006). Stable aluminum and chromium oxide clusters as precursors to nanoscale materials. Computational Materials Science, 35, 366-370.
  • Kohli, N., Singh, O., Anand, K., & Singh, R.C. (2012). Effect of reaction temperature on crystallite size and sensing response of chromium oxide nanoparticles. Materials Research Bulletin, 47, 2072-2076.
  • Lei, S.J., Peng, X.M., Liang, Z.H., Li, X.P., Wang, C.Y., Cheng, B.C., Xiao, Y.H., & Zhou, L. (2012). Self-template formation and properties study of Cr2O3 nanoparticle tubes. Journal of Materials Chemistry, 22, 1643-1652.
  • Guo, Z.Q., Ping, Z.F., & Chen N. (1996). Production and properties of Cr2O3 raw material for refractories. Industrial Ceramics, 16, 172.
  • Cellard, A., Zenati, R., Garnier, V., Fantozzi, G., & Baret G. (2007). Optimization of chromium oxide nanopowders dispersion for spray-drying. Journal of the European Ceramic Society, 27, 1017-1021.
  • Li, M.S., Feng, C.J., & Wang, F.H. (2006). Effect of partial pressure of reactive gas on chromium nitride and chromium oxide deposited by arc ion plating. Transactions of Nonferrous Metals Society of China, 16, 276-279.
  • Siab, R., Huvier, C., Kemdehoundja, M., Grosseau-Poussard, J.L., & Dinhut, J.F. (2009). On the relation between damage rate and stress level evolution in α-Cr2O3 thin films growing on Ni–33at%Cr. Corrosion Science, 51, 2246-2248.
  • Shiratsuchi, Y., Kawahara, S.I., Noutomi, H., Arakawa, K., Mori, H., & Nakatani, R. (2011). Effect of crystallinity of Co layer on perpendicular exchange bias in Au-capped ultrathin Co film on Cr2O3(0 0 0 1) thin film. Journal of Magnetism and Magnetic Materials, 323, 579-586.
  • Rafi, U.D., Qu, X.H., Li, P., Lin, Z., Wan, Q., Iqbal, M.Z., Rafique, M.Y., Farooq, M.H., & Islam, U.D. (2012). Superior Catalytic Effects of Nb2O5, TiO2, and Cr2O3 Nanoparticles in Improving the Hydrogen Sorption Properties of NaAlH4. The Journal of Physical Chemistry C, 116, 11924-11938.
  • Bates, M.K., Jia, Q.Y., Ramaswamy, N., Allen, R.J., & Mukerjee, S. (2015). Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction. The Journal of Physical Chemistry C, 119, 5467-5477.
  • Karuppuchamy, S., Matsui, H., Kira, K., Hassan, M.A., &Yoshihara, M. (2012). Visible light induced photocatalytic activity of Nb2O5/carbon cluster/Cr2O3 composite materials. Ceramics International, 38, 1515-1521.
  • Khaleel, A., Shehadi, I., & Shamisi, M.A. (2010). Nanostructured chromium–iron mixed oxides: Physicochemical properties and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 355, 75-82.
  • Shaislamov, U., Yang, B.Y., & Park, K. (2012). Enhanced photocatalytic properties of TiO2 nanotube arrays with Cr2O3 nanoparticles under visible light. Journal of the Korean Physical Society, 61, 759–763.
  • Khassin, A.A., Sipatrov, A.G., Demeshkina, M.P., & Minyukova, T.P. (2009). Partially hydrated iron–chromium oxide catalyst for the Fischer-Tropsch synthesis. Reaction Kinetics and Catalysis Letters, 97, 371–379.
  • Kim, A.R., Lee, B., Park, M.J., Moon, D.J., & Bae, J.W. (2012). Catalytic performance on CuO–Cr2O3–Ga2O3 mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ratio. Catalysis Communications, 19, 66-69.
  • Tamiolakis, I., Lykakis, I.N., Katsonlidis, A.P., Malliakas, C.D., & Armatas, G.S. (2012). Catalytic performance on CuO–Cr2O3–Ga2O3 mixed oxides for water gas shift reaction: Effects of Ga/Cr molar ra Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 22, 6919-6927.
  • Wang, F., Fan J.L., Zhao, Y., Zhang, W.X., Liang, Y., Lu, J.Q., Lun, M.F., & Wang, Y.J. (2014). Effects of yttrium-doping on the performance of Cr2O3 catalysts for vapor phase fluorination of 1,1,2,3-tetrachloropropene. Journal of Fluorine Chemistry, 166, 78-83.
  • Khafri M.A., & Lafdani, M.H.K. (2012). A novel method to synthesize Cr2O3 nanopowders using EDTA as a chelating agent. Powder Technology, 222, 152-159.
  • Song, M.Y., Kwon, S.N., Park, H.R., & Mumn, D.R. (2011). Effects of fine Cr2O3 addition on Mg's hydrogen-storage performance. Journal of Industrial and Engineering Chemistry, 17, 167-169.
  • Jin, H., Huang, Y.J., & Jian, J.W. (2015). Sensing mechanism of the zirconia-based highly selective NO sensor by using a plate-like Cr2O3 sensing electrode. Sensors and Actuators B: Chemical, 219, 112-118.
  • Hao, R., Yuan, J.Y., & Peng, Q. (2006). Fabrication and Sensing Behavior of Cr2O3 Nanofibers via In situ Gelation and Electrospinning. Chemistry Letters, 35, 1248-1249.
  • Yoon, J.W., Kim, H.J., Jeong, H.M., & Lee J.H. (2014). Gas sensing characteristics of p-type Cr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sensors and Actuators B: Chemical, 202, 263-271.
  • Stanoiu, A., Simion, C.E., Diamandescn, L., Mihaila, D.T., & Feder, M. (2012). NO2 sensing properties of Cr2O3 highlighted by work function investigations. Thin Solid Films, 522, 395-400.
  • Montiel, H., Alvarez, G., Conde-Gallardo, A., & Zamorano, R. (2015). Microwave absorption behavior in Cr2O3 nanopowders. Journal of Alloys and Compounds, 628, 272-276.
  • Lebreau, F., Islam, M.M., Diawara, B., & Marcus, P. (2014). Structural, Magnetic, Electronic, Defect, and Diffusion Properties of Cr2O3: A DFT+U Study. The Journal of Physical Chemistry C, 118, 18133-18145.
  • Hehl, F.W., Obukhov, Y.N., Rivera, J.P., & Schmid, H. (2009). Magnetoelectric Cr2O3 and relativity theory. The European Physical Journal B, 71, 321.
  • Boldyrev, Y.I., Ivanova, N.D., Sokolsky, G.V., Ivanov, S.V., & Stadnik, O.A. (2013). Thin film nonstoichiometric chromium oxide-based cathode material for rechargeable and primary lithium batteries. Journal of Solid State Electrochemistry, 17, 2213–2221.
  • Sahan, H., Goktepe, H., Patat, S., & Ulgen, A. (2010). Effect of the Cr2O3 coating on electrochemical properties of spinel LiMn2O4 as a cathode material for lithium battery applications. Solid State Ionics, 181, 1437-1444.
  • Lin, X.T., Wu, K.Q., Shao, L.Y., Shui, M., Jiang, X.X., Wang, D.G., Long, N.B., Ren, Y.L., & Shu, J. (2014). Facile preparation of Cr2O3@Ag2O composite as high performance lithium storage material. Journal of Alloys and Compounds, 598, 68-72.
  • Cheng, C.X., Yi, H.Y., & Chen, F. (2014). Effect of Cr2O3 Coating on LiNi1/3Co1/3Mn1/3O2 as Cathode for Lithium-Ion Batteries. Journal of Electronic Materials, 43, 3681–3687.
  • Khamlich, S., Mccrindle, R., Nuru, Z.Y., Cingo, N., & Maaza, M. (2013). Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers. Applied Surface Science, 265, 745-749.
  • Khamlich, S., Nemraoui, O., Mongwaketsi, N., Mccrindle, R., Cingo, N., & Maaza, M. (2012). Black Cr/α-Cr2O3 nanoparticles based solar absorbers. Physica B: Condensed Matter, 407, 1509-1512.
  • Gibot, P., & Vidal, L. (2010). Original synthesis of chromium (III) oxide nanoparticles. Journal of the European Ceramic Society, 30, 911-915.
  • Jankovsky, O., Sedmidubsky, D., Sofer, Z., Luxa, J., & Bartunek, V. (2015). Simple synthesis of Cr2O3 nanoparticles with a tunable particle size. Ceramics International, 41, 4644-4650.
  • Gupta, R.K., Mitchell, E., Candler, J., Kahol, P.K., Ghosh, K., & Dong, L. (2014). Facile synthesis and characterization of nanostructured chromium oxide. Powder Technology, 254, 78-81.
  • Jung, Y.S., Kim, K.H., Jang, T.Y., Tak, Y., & Baeck, S.H. (2011). Enhancement of photocatalytic properties of Cr2O3–TiO2 mixed oxides prepared by sol–gel method. Current Applied Physics, 11, 358-361.
  • El-Sheikh, S.M., Mohamed, R.M., & Fouad, O.A. (2009). Synthesis and structure screening of nanostructured chromium oxide powders. Journal of Alloys and Compounds, 482, 302-307.
  • Ocana, M. (2001). Nanosized Cr2O3 hydrate spherical particles prepared by the urea method. Journal of the European Ceramic Society, 21, 931-939.
  • Tyagi, A.K., Mangamma, G., Kamruddin, M., Dash, S., & Raj, B. (2007). Synthesis and Characterization of Nanocrystalline Cr2O3 and ZrO2 Ceramic Materials. Journal of Nanoscience and Nanotechnology, 7, 2005-2009.
  • Pei, Z.Z., & Zhang, Y. (2008). A novel method to prepare Cr2O3 nanoparticles. Jo Materials Letters, 62, 504-506.
  • Pei, Z.Z., Xu, H.B., & Zhang, Y. (2009). Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. Journal of Alloys and Compounds, 468, L5-L8.
  • Wei, G.Y., Qu, J.K., Zheng, Y.D., Qi, T., & Guo Q. (2012). Preparation of Cr2O3 precursors by hydrothermal reduction in the abundant Na2CO3 and Na2CrO4 solution. International Journal of Minerals, Metallurgy, and Materials, 19, 978–985.
  • Xu, H.T., Lou, T.J., & Li, Y.D. (2004). Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres. Inorganic Chemistry Communications, 7, 666-668.
  • Balachandran, U., Siegel, R.W., Liao, Y.X., & Askew, T.R. (1995). Synthesis, sintering, and magnetic properties of nanophase Cr2O3. Nanostructured Materials, 5, 505-512.
  • Balakrishnan, G., Kuppusami, P., Sairam, T.N., Rao, R.V.S., Mohandas, E., & Sastikumar, D. (2009). Influence of background gas atmosphere on formation of Cr2O3 thin films prepared by pulsed laser deposition. Surface Engineering, 25, 223-227.
  • Egharevba, G.O., Eleruja, M.A., Osasona, O., Akinwunmi, O.O., Olofinjana, B., Jeynes, C., & Ajayi, E.O.B. (2012). Synthesis and Some Properties of Metal Organic Chemical Vapour Deposited Lithium Chromium Oxide Thin Films. Journal of Materials Science Research, 1, 130-137.
  • He, X., Li, C., Zhu, Q., Hou, B., Jiang, Y., & Wu, L. (2014). Electrochemical mechanism of Cr(iii) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid. RSC Advances, 4, 64174-64182.
  • Liang, S., Zhang, H., Luo, M., Luo, K., Li, P., Xu, H., & Zhang, Y. (2014). Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH. Ceramics International, 40, 4367-4373.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ahmet Recep Korkmaz This is me 0000-0003-3583-514X

Emir Çepni 0000-0001-8738-1157

Hülya Öztürk Doğan 0000-0002-4072-7744

Publication Date December 30, 2020
Submission Date April 20, 2020
Acceptance Date October 15, 2020
Published in Issue Year 2020

Cite

APA Korkmaz, A. R., Çepni, E., & Öztürk Doğan, H. (2020). Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 994-1003. https://doi.org/10.35193/bseufbd.723358